Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach

Basant Agarwal1, Soujanya Poria2, Namita Mittal1, Alexander Gelbukh3, Amir Hussain2
1Department of Computer Science and Engineering, MNIT, Jaipur, India
2Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
3Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cambria E, Hussain A. Sentic album: content, concept, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.

Poria S, Cambria E, Hussain A, Huang G-B. Towards an intelligent framework for multimodal affective data analysis. Neural Netw. 2015;63:104–16.

Howard N, Cambria E. Intention awareness: improving upon situation awareness in human-centric environments. Hum Centric Comput Inf Sci. 2013;3(9):1–17.

Cambria E, Hussain A, Durrani T, Havasi C, Eckl C, Munro J. Sentic computing for patient centered applications. In: IEEE ICSP, Beijing; 2010. p. 1279–1282.

Cambria E, Hussain A, Havasi C, Eckl C, Munro J. Towards crowd validation of the UK national health service. In: ACM WebSci, Raleigh; 2010.

Liu B. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies. San Rafael: Morgan & Claypool Publishers; 2012.

Erik C, Amir H, Catheine H, Chris E. Common sense computing: From the society of mind to digital intuition and beyond. In: Lecture notes in computer science 5707, Springer; 2009. p. 252–259.

Cambria E, Gastaldo P, Bisio F, Zunino R. An ELM-based model for affective analogical reasoning. Neurocomputing. 2015;149:443–55.

Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3(1):1157–82.

Agarwal B, Mittal N. Enhancing performance of sentiment analysis by semantic clustering of features. IETE J Res. 2014;60(6):414–22.

Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.

Agarwal B, Mittal N. Prominent feature extraction for review analysis: an empirical study. J Exp Theor Artif Intell. 2014. doi: 10.1080/0952813X.2014.97783 .

Hougue N, Bhattacharyya DK, Kalita JK. MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl. 2014;41(4):6371–85.

Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP; 2002. p. 79–86.

Matsumoto S, Takamura H, Okumura M. Sentiment classification using word sub-sequences and dependency sub-trees. In: Proceedings of PAKDD; 2005. p. 301–311.

Pak A, Paroubek P. Text representation using dependency tree sub-graphs for sentiment analysis. DASFAA workshop; 2011. p. 323–332.

Nakagawa T, Inui K, Kurohashi S. Dependency tree-based sentiment classification using CRFs with hidden variables. In: Proceeding HLT ’10 human language technologies: annual conference of the North American chapter of the association for computational linguistics; 2010. p. 786–794.

Xia R, Zong C, Li S. Ensemble of feature sets and classification algorithms for sentiment classification. J Inf Sci. 2011;181(6):1138–52.

Riloff E, Patwardhan S, Janyce W. Feature subsumption for opinion analysis. In: EMNLP; 2006. p. 440–448.

Joshi M, Penstein-Rose C. Generalizing dependency features for opinion mining. In: ACL; 2009. p. 313–316.

Mejova Y, Srinivasan P. Exploring feature definition and selection for sentiment classifiers. In: Proceedings of the fifth international AAAI conference on weblogs and social media; 2011. p. 546–549.

Mullen T, Collier N. Sentiment analysis using support vector machines with diverse information sources. In: EMNLP; 2004. p. 412–418.

Osgood CE, Succi GJ, Tannenbaum PH. The measurement of meaning. Champaign: University of Illinois Press; 1957.

Turney PD. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. ACL-2002; 2002. p. 417–424.

Dang Y, Zhang Y, Chen H. A lexicon enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst. 2010;25(4):46–53.

Gelfand B, Wulfekuler M, Punch WF. Automated concept extraction from plain text. In: AAAI workshop on text categorization; 1998. p. 13–17.

Hatzivassiloglou V, McKeown KR. Predicting the semantic orientation of adjectives. In: ACL; 1997. p. 174–181.

Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernandez L. Syntactic n-grams as machine learning features for natural language processing. Expert Syst Appl. 2014;41(3):853–60.

Sidorov G. Non-continuous syntactic n-grams. Polibits. 2013;48(1):67–75.

de Marneffe M-C, Manning CD. The stanford typed dependencies representation. In: Coling 2008: proceedings of the workshop on cross-framework and cross-domain parser evaluation. Association for Computational Linguistics; 2008. p. 1–8.

Soujanya P, Basant A, Alexander G, Amir H, Newton H. Dependency-based semantic parsing for concept-level text analysis. In: CICLing 2014; 2014. p. 113–27.

Poria S, Cambria E, Winterstein G, Huang G-B. Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl Based Syst. 2014;69:45–63.

Havasi C, Speer R, Alonso JB. Conceptnet 3: a flexible, multilingual semantic network for common sense knowledge. In: Recent advances in natural language processing; 2007. p. 27–29.

Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense knowledge for handwritten Chinese text recognition. Cogn Comput. 2013;5(2):234–42.

Manning CD, Raghvan P, Schutze H. Introduction to information retrieval. Cambridge: Cambridge University Press; 2008.

Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the association for computational linguistics (ACL); 2004. p. 271–278.

Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL; 2007. p. 440–447.

Xia R, Zong C. Exploring the use of word relation features for sentiment classification. In: COLING-2010; 2010. p. 1336–1344.

Prabowo R, Thelwall M. Sentiment analysis: a combined approach. J Informetr. 2009;3(2):143–57.

O’Keefe T, Koprinska I. Feature selection and weighting methods in sentiment analysis. In: Proceedings of the 14th Australasian document computing symposium, Sydney, Australia, ACL; 2009.

Ng V, Dasgupta S, Arifin SM. Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In: Proceedings of the COLING/ACL 2006 main conference poster sessions; 2006. p. 611–618.

Tu Z, Jiang W, Liu Q, Lin S. Dependency forest for sentiment analysis. In: First CCF conference, natural language processing and Chinese computing; 2012. p 69–77.

Abbasi A. Intelligent feature selection for opinion classification. IEEE Intell Syst. 2010;25(4):75–9.

Abbasi A, Chen H, Salem A. Sentiment analysis in multiple languages: feature selection for opinion classification in Web forums. ACM Trans Inf Syst. 2008;26(3):12.

Poria S, Gelbukh A, Cambria E, Hussain A, Huang G-B. EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl Based Syst. 2014;69:108–23.