Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cambria E, Hussain A. Sentic album: content, concept, and context-based online personal photo management system. Cogn Comput. 2012;4(4):477–96.
Poria S, Cambria E, Hussain A, Huang G-B. Towards an intelligent framework for multimodal affective data analysis. Neural Netw. 2015;63:104–16.
Howard N, Cambria E. Intention awareness: improving upon situation awareness in human-centric environments. Hum Centric Comput Inf Sci. 2013;3(9):1–17.
Cambria E, Hussain A, Durrani T, Havasi C, Eckl C, Munro J. Sentic computing for patient centered applications. In: IEEE ICSP, Beijing; 2010. p. 1279–1282.
Cambria E, Hussain A, Havasi C, Eckl C, Munro J. Towards crowd validation of the UK national health service. In: ACM WebSci, Raleigh; 2010.
Liu B. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies. San Rafael: Morgan & Claypool Publishers; 2012.
Erik C, Amir H, Catheine H, Chris E. Common sense computing: From the society of mind to digital intuition and beyond. In: Lecture notes in computer science 5707, Springer; 2009. p. 252–259.
Cambria E, Gastaldo P, Bisio F, Zunino R. An ELM-based model for affective analogical reasoning. Neurocomputing. 2015;149:443–55.
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3(1):1157–82.
Agarwal B, Mittal N. Enhancing performance of sentiment analysis by semantic clustering of features. IETE J Res. 2014;60(6):414–22.
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.
Agarwal B, Mittal N. Prominent feature extraction for review analysis: an empirical study. J Exp Theor Artif Intell. 2014. doi: 10.1080/0952813X.2014.97783 .
Hougue N, Bhattacharyya DK, Kalita JK. MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl. 2014;41(4):6371–85.
Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP; 2002. p. 79–86.
Matsumoto S, Takamura H, Okumura M. Sentiment classification using word sub-sequences and dependency sub-trees. In: Proceedings of PAKDD; 2005. p. 301–311.
Pak A, Paroubek P. Text representation using dependency tree sub-graphs for sentiment analysis. DASFAA workshop; 2011. p. 323–332.
Nakagawa T, Inui K, Kurohashi S. Dependency tree-based sentiment classification using CRFs with hidden variables. In: Proceeding HLT ’10 human language technologies: annual conference of the North American chapter of the association for computational linguistics; 2010. p. 786–794.
Xia R, Zong C, Li S. Ensemble of feature sets and classification algorithms for sentiment classification. J Inf Sci. 2011;181(6):1138–52.
Riloff E, Patwardhan S, Janyce W. Feature subsumption for opinion analysis. In: EMNLP; 2006. p. 440–448.
Joshi M, Penstein-Rose C. Generalizing dependency features for opinion mining. In: ACL; 2009. p. 313–316.
Mejova Y, Srinivasan P. Exploring feature definition and selection for sentiment classifiers. In: Proceedings of the fifth international AAAI conference on weblogs and social media; 2011. p. 546–549.
Mullen T, Collier N. Sentiment analysis using support vector machines with diverse information sources. In: EMNLP; 2004. p. 412–418.
Osgood CE, Succi GJ, Tannenbaum PH. The measurement of meaning. Champaign: University of Illinois Press; 1957.
Turney PD. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. ACL-2002; 2002. p. 417–424.
Dang Y, Zhang Y, Chen H. A lexicon enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst. 2010;25(4):46–53.
Gelfand B, Wulfekuler M, Punch WF. Automated concept extraction from plain text. In: AAAI workshop on text categorization; 1998. p. 13–17.
Hatzivassiloglou V, McKeown KR. Predicting the semantic orientation of adjectives. In: ACL; 1997. p. 174–181.
Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernandez L. Syntactic n-grams as machine learning features for natural language processing. Expert Syst Appl. 2014;41(3):853–60.
Sidorov G. Non-continuous syntactic n-grams. Polibits. 2013;48(1):67–75.
de Marneffe M-C, Manning CD. The stanford typed dependencies representation. In: Coling 2008: proceedings of the workshop on cross-framework and cross-domain parser evaluation. Association for Computational Linguistics; 2008. p. 1–8.
Soujanya P, Basant A, Alexander G, Amir H, Newton H. Dependency-based semantic parsing for concept-level text analysis. In: CICLing 2014; 2014. p. 113–27.
Poria S, Cambria E, Winterstein G, Huang G-B. Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl Based Syst. 2014;69:45–63.
Havasi C, Speer R, Alonso JB. Conceptnet 3: a flexible, multilingual semantic network for common sense knowledge. In: Recent advances in natural language processing; 2007. p. 27–29.
Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense knowledge for handwritten Chinese text recognition. Cogn Comput. 2013;5(2):234–42.
Manning CD, Raghvan P, Schutze H. Introduction to information retrieval. Cambridge: Cambridge University Press; 2008.
Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the association for computational linguistics (ACL); 2004. p. 271–278.
Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL; 2007. p. 440–447.
Xia R, Zong C. Exploring the use of word relation features for sentiment classification. In: COLING-2010; 2010. p. 1336–1344.
O’Keefe T, Koprinska I. Feature selection and weighting methods in sentiment analysis. In: Proceedings of the 14th Australasian document computing symposium, Sydney, Australia, ACL; 2009.
Ng V, Dasgupta S, Arifin SM. Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In: Proceedings of the COLING/ACL 2006 main conference poster sessions; 2006. p. 611–618.
Tu Z, Jiang W, Liu Q, Lin S. Dependency forest for sentiment analysis. In: First CCF conference, natural language processing and Chinese computing; 2012. p 69–77.
Abbasi A. Intelligent feature selection for opinion classification. IEEE Intell Syst. 2010;25(4):75–9.
Abbasi A, Chen H, Salem A. Sentiment analysis in multiple languages: feature selection for opinion classification in Web forums. ACM Trans Inf Syst. 2008;26(3):12.