Nồng độ và phân tích rủi ro sức khỏe của các nguyên tố kim loại trong không khí xung quanh tại khu vực Longjing ở Đài Loan trung tâm

Environmental Geochemistry and Health - Tập 40 - Trang 461-472 - 2017
Guor-Cheng Fang1, Yu-Cheng Chen2, Chaur-Tsuen Lo3, Meng-Hsien Cho1, Yuan-Jie Zhuang1, Kai-Hsiang Tsai1, Chao-Yang Huang1, You-Fu Xiao1
1Department of Safety, Health and Environmental Engineering, Hung Kuang University, Sha-Lu, Taichung, Taiwan, ROC
2National Environmental Health Research Center, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
3Department of Biotechnology, National Formosa University, Yunlin, Taiwan, ROC

Tóm tắt

Nồng độ của các hạt bụi và các nguyên tố kim loại gắn với tổng hạt lơ lửng trong không khí xung quanh tại các địa điểm lấy mẫu Trường Tiểu học Long Cyuan (LCYES), Trường Tiểu học Lung Ching (LCHES) và Trường Tiểu học Long Shan (LSPS) ở khu vực Longjing đã được đo lường. Các bài kiểm tra sự khác biệt có ý nghĩa đã được thực hiện tại các địa điểm LSPS, LCYES và LCHES. Cuối cùng, các giá trị rủi ro ung thư và không ung thư cho các địa điểm LSPS, LCYES và LCHES trong khu vực Longjing đã được đánh giá. Kết quả cho thấy nồng độ trung bình của các hạt bụi và các nguyên tố kim loại cao nhất vào các tháng Mười, Mười một, Giêng, Hai, Ba, Tư, Tám và Chín. Nồng độ trung bình của các hạt bụi và nguyên tố kim loại tại LCHES cao hơn so với các địa điểm lấy mẫu khác. Các Biểu đồ Phân tán Nồng độ cho thấy không có sự biến đổi có ý nghĩa giữa các địa điểm lấy mẫu LSPS, LCYES và LCHES trong khu vực Longjing. Do đó, có thể suy ra rằng các địa điểm lấy mẫu này có nguồn phát thải giống nhau. Các rủi ro ung thư do hít phải ở trẻ em và người lớn theo phương pháp của EPA Hoa Kỳ đều nằm trong mức chấp nhận được. Các rủi ro không ung thư cho thấy rằng tất cả các nguyên tố kim loại được xem xét trong bài này đều không gây hại cho sức khỏe con người.

Từ khóa

#nguyên tố kim loại #không khí xung quanh #rủi ro sức khỏe #nồng độ hạt bụi

Tài liệu tham khảo

Antonini, J. M. (2003). Health effects of welding. Critical Reviews in Toxicology, 33(1), 61–103. Antonini, J. M., Taylor, M. D., Zimmer, A. T., & Roberts, J. R. (2004). Pulmonary responses to welding fumes: Role of metal constituents. Journal of Toxicology and Environmental Health, Part A, 67(3), 233–249. Arditsoglou, A., & Samara, C. (2005). Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study. Chemosphere, 59, 669–678. Chen, R., Zhang, Y., Yang, C., Zhao, Z., Xu, X., & Kan, H. (2013). Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke, 44, 954–960. Choi, E. M., Kim, S. H., Holsen, T. M., & Yi, S. M. (2009). Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan. Environmental Pollution, 157(3), 816–822. Cocco, P., Rice, C. H., Chen, J. Q., McCawley, M., McLaughlin, J. K., & Dosemeci, M. (2000). Non-malignant respiratory diseases and lung cancer among Chinese workers exposed to silica. Journal of Occupational and Environmental Medicine, 42(6), 639–644. Donaldson, K., & MacNee, W. (2001). Mini-review: Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). International Journal of Hygiene and Environmental Health, 203, 411–415. Fang, G., Chang, C., Chu, C., Wu, Y., Fu, P. P., Yang, I., et al. (2003). Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Science of the Total Environment, 308(1–3), 157–166. Fang, G. C., Basu, N., Nam, D. H., & Yang, I. L. (2009). Characterization of ambient air particulates and particulate mercury at Sha-Lu, Central Taiwan. Environmental Forensics, 10(4), 277–285. Fang, G. C., Cheng, M. T., & Chang, C. N. (1997). Monitoring and modeling the mass, heavy metal and ion species dry deposition in central Taiwan. Journal of Environmental Science and Health. Part A, A32(8), 2183–2199. Fang, G. C., Chiang, H. C., Chen, Y. C., Xiao, Y. F., & Zhuang, Y. J. (2014). Particulates and metallic elements monitoring at two sampling sites (Harbor, Airport) in Taiwan. Environmental Forensics., 15, 296–305. Fang, G. C., Huang, L., Huang, Y. J. H., & Liu, C. K. (2012). Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203-204(15), 158–168. Fang, G. C., Lo, C. T., Zhuang, Y. J., Kuo, Y. C., & Cho, M. H. (2015). Sources of ambient air particulates and Hg(p) pollutants at Freeway, industrial, thermal power plant F.I.T. characteristic sites. Journal of Environmental Earth Sciences, 75, 103. doi:10.1007/s12665-015-5057-4. Grantz, D. A., Garner, J. H. B., & Johnson, D. W. (2003). Ecological effects of particulate matter. Environment International, 29, 213–239. Horvath, H. (1995). Size segregated light absorption coefficient of the atmospheric aerosol. Atmospheric Environment, 29(8), 875–883. Huang, W., Duan, D., Zhang, Y., Cheng, H., & Ran, Y. (2014). Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China. Marine Pollution Bulletin, 85, 720–726. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182. Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., et al. (2004). Report: The German view: Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 203, 399–407. Kavuri, N. C., Paul, K. K., & Roy, N. (2015). TSP aerosol source apportionment in the urban region of the Indian steel city, Rourkela. Particuology, 20, 124–133. Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55. Lau, O. W., & Luk, S. F. (2001). Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong. Atmospheric Environment, 35(18), 3113–3120. Liu, X., Zhai, Y., Zhu, Y., Liu, Y., Chen, H., Li, P., et al. (2015). Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Science of the Total Environment, 517, 215–221. Ma, Y., Wang, Z., Tan, Y., Xu, S., Kong, S., Wu, G., et al. (2016). Comparison of inorganic chemical compositions of atmospheric TSP, PM10 and PM2.5 in northern and southern Chinese coastal cities. Journal of Environmental Sciences. doi:10.1016/j.jes.2016.05.045. Martins, M. C. H., Fatigati, F. L., Véspoli, T. C., Martins, L. C., Pereira, L. A. A., Martins, M. A., et al. (2004). Research report: Influence of socioeconomic conditions on air pollution adverse health effects in elderly people: An analysis of six regions in São Paulo, Brazil. Journal of Epidemiology and Community Health, 58, 41–46. Marty, M. A., Siegel, D., Mahmud, A., Servin, A., Yee, S., Zuo, Y. P., et al. (2015). Air toxics hot spots program. Risk assessment guidelines. Guidance manual for preparation of health risk assessments. February 2015. Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298. Progiou, A. G., & Ziomas, I. C. (2015). Predicting annual average particulate concentration in urban areas. Science of the Total Environment, 532(2015), 353–359. Raoof, S., & Al-Sahhaf, M. (1992). Study of particulate pollutants in the air of Riyadh by energy dispersive X-ray fluorescence spectrometry. Atmospheric Environment Part B: Urban Atmosphere, 26(3), 421–423. Sharma, R. K., Agrawal, M., Fiona, M., & Marshall, F. M. (2008). Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi city, India. Environmental Monitoring and Assessment, 142(1–3), 269–278. Sun, Q., Hong, X., & Wold, L. E. (2010). Cardiovascular effects of ambient particulate air pollution exposure. Circulation, 121, 2755–2765. Sun, Y., Hu, X., Wu, J., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494. US EPA (U.S. Environmental Protection Agency). (1989). Risk assessment guidance for super fund volume I human health evaluation manual (part A). EPA/540/1-89/002 December. http://www.epa.gov/swerrims/riskassessment/ragsa/index.htm. Var, F., Narita, Y., & Tanaka, S. (2000). The concentration, trend and seasonal variation of metals in the atmosphere in 16 Japanese cities shown by the results of National Air Surveillance Network (NASN) from 1974 to 1996. Atmospheric Environment, 34(17), 2755–2770. Wong, C. M., Atkinson, R. W., Anderson, H. R., Hedley, A. J., Ma, S., Chau, P. Y., et al. (2002). A tale of two cities: Effects of air pollution on hospital admissions in Hong Kong and London compared. Environmental Health Perspectives, 110, 67–77. Wongphatarakul, V., Friedlander, S. K., & Pinto, J. P. (1998). A comparative study of PM2.5 ambient aerosol chemical databases. Environmental Science and Technology, 32, 3926. Wu, S., Yang, D., Wei, H., Wang, B., Huang, J., Li, H., et al. (2015). Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: A panel study among young adults in Beijing, China. Chemosphere., 135, 347–353. Zhang, J. J. Y., Sun, L., Barrett, O., Bertazzon, S., Underwood, F. E., & Johnson, M. (2015). Development of land-use regression models for metals associated with airborne particulate matter in a North American city. Atmospheric Environment, 106, 165–177. Zhang, Z., & Friedlander, S. K. (2000). A comparative study of chemical databases for fine particle chinese aerosols. Environmental Science and Technology, 34, 4687–4698.