Nồng độ và phân bổ nguồn gốc của hợp chất hữu cơ bay hơi (VOCs) trong không khí xung quanh Kuala Lumpur, Malaysia

Springer Science and Business Media LLC - Tập 85 - Trang 437-452 - 2016
Puteri Nurafidah Hosaini1, Md Firoz Khan2, Nur Ili Hamizah Mustaffa1, Norhaniza Amil1,3, Noorlin Mohamad1,4, Shoffian Amin Jaafar1, Mohd Shahrul Mohd Nadzir1,2, Mohd Talib Latif1,5
1School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
2Centre for Tropical Climate Change System (IKLIM), Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Malaysia
3School of Industrial Technology (Environmental Division), Universiti Sains Malaysia, Minden, Malaysia
4School of Ocean Engineering, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
5Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi, Malaysia

Tóm tắt

Sự tích tụ của các hợp chất hữu cơ bay hơi (VOCs) trong không khí xung quanh ảnh hưởng đến chất lượng không khí thông qua việc tạo ra ozone ở mức độ bề mặt và khí aerosol hữu cơ thứ cấp. Một nghiên cứu về sự phân bố và phân tích nguồn gốc của VOCs đã được thực hiện tại hai trạm để điều tra tình trạng chất lượng không khí của Kuala Lumpur. Mẫu không khí xung quanh đã được thu thập vào các túi lấy mẫu Tedlar bằng máy bơm lấy mẫu không khí và sau đó được tiền cô đặc bằng sợi chiết xuất vi pha rắn. Phân tích sắc ký khí – khối phổ (GC–MS) đã được sử dụng để đo các loài VOC. Một mô hình điểm thành phần chính tuyệt đối – hồi quy tuyến tính đa biến (APCS–MLR) sau đó đã được áp dụng để xác định các nguồn gốc đóng góp có thể của VOCs. Mười bảy loại VOC đã được phát hiện, trong đó dichloroetan (243 ± 241 ppbv) là loài phong phú nhất tại cả hai trạm. Trong nhóm hợp chất benzen, toluen, etyl benzen và xylen, toluen chiếm ưu thế với trung bình 135 ± 202 ppbv, tiếp theo là p-xilen (41,3 ± 24,7 ppbv), etyl benzen (34,0 ± 32,6 ppbv) và benzen (18,2 ± 12,9 ppbv). Một sự tương quan mạnh giữa benzen và toluen (p < 0,01, r = 0,65) cho thấy ảnh hưởng của khí thải phương tiện giao thông trong thời gian lấy mẫu. Kết quả APCS–MLR chỉ ra rằng các nguồn đóng góp cho VOCs tại các trạm lấy mẫu gồm có sự bay hơi xăng (31 %), khí thải phương tiện giao thông/solvent (22 %), khí thải phương tiện giao thông (21 %), sử dụng máy bơm xăng/solvent (15 %) và khí thải công nghiệp (10 %).

Từ khóa

#hợp chất hữu cơ bay hơi #VOCs #chất lượng không khí #Kuala Lumpur #nghiên cứu môi trường

Tài liệu tham khảo

An J, Zhu B, Wang H, Li Y, Lin X, Yang H (2014) Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos Environ 97:206–214. doi:10.1016/j.atmosenv.2014.08.021 Anderson MJ, Daly EP, Miller SL, Milford JB (2002) Source apportionment of exposures to volatile organic compounds: II. Application of receptor models to TEAM study data. Atmos Environ 36:3643–3658. doi:10.1016/S1352-2310(02)00280-7 Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101. doi:10.1016/S1352-2310(99)00460-4 Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37(Supplement 2):197–219. doi:10.1016/S1352-2310(03)00391-1 Badami M (2005) Transport and urban air pollution in India. Environ Manag 36:195–204. doi:10.1007/s00267-004-0106-x Bae M-S, Schauer JJ, DeMinter JT, Turner JR (2004) Hourly and daily patterns of particle-phase organic and elemental carbon concentrations in the urban atmosphere. J Air Waste Manag As 54:823–833. doi:10.1080/10473289.2004.10470957 Bari MA, Kindzierski WB, Wheeler AJ, Héroux M-È, Wallace LA (2015) Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build Environ 90:114–124. doi:10.1016/j.buildenv.2015.03.023 Barletta B, Meinardi S, Simpson IJ, Zou S, Rowland FS, Blake DR (2008) Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmos Environ 42:4393–4408. doi:10.1016/j.atmosenv.2008.01.028 Blanchard CL, Tanenbaum S, Lawson DR (2008) Differences between weekday and weekend air pollutant levels in Atlanta; Baltimore; Chicago; Dallas-Fort Worth; Denver; Houston; New York; Phoenix; Washington, DC; and Surrounding Areas. J Air Waste Manag As 58:1598–1615. doi:10.3155/1047-3289.58.12.1598 Brock CA et al (2003) Particle growth in urban and industrial plumes in Texas. J Geophys Res Atmos 108:4111. doi:10.1029/2002JD002746 Brown SG, Frankel A, Hafner HR (2007) Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos Environ 41:227–237. doi:10.1016/j.atmosenv.2006.08.021 Cetin E, Odabasi M, Seyfioglu R (2003) Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci Total Environ 312:103–112. doi:10.1016/S0048-9697(03)00197-9 Chen J et al (2009) Characteristics of gaseous pollutants near a main traffic line in Beijing and its influencing factors. Atmos Res 94:470–480. doi:10.1016/j.atmosres.2009.07.008 Chinkin LR, Coe DL, Funk TH, Hafner HR, Roberts PT, Ryan PA, Lawson DR (2003) Weekday versus weekend activity patterns for ozone precursor emissions in California’s South Coast Air Basin. J Air Waste Manag As 53:829–843. doi:10.1080/10473289.2003.10466223 Draxler RR, Rolph GD (2014) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, College Park. http://www.arl.noaa.gov/HYSPLIT.php. Durmusoglu E, Taspinar F, Karademir A (2010) Health risk assessment of BTEX emissions in the landfill environment. J Hazard Mater 176:870–877. doi:10.1016/j.jhazmat.2009.11.117 Ee-Ling O, Mustaffa NIH, Amil N, Khan MF, Latif MT (2015) Source contribution of PM2.5 at different locations on the Malaysian peninsula. Bull Environ Contam Toxicol 94:537–542. doi:10.1007/s00128-015-1477-9 Gaarenstroom PD, Perone SP, Moyers JL (1977) Application of pattern recognition and factor analysis for characterization of atmospheric particulate composition in southwest desert atmosphere. Environ Sci Technol 11:795–800. doi:10.1021/es60131a003 Gee IL, Sollars CJ (1998) Ambient air levels of volatile organic compounds in Latin American and Asian cities. Chemosphere 36:2497–2506. doi:10.1016/S0045-6535(97)10217-X Guo H, Wang T, Simpson IJ, Blake DR, Yu XM, Kwok YH, Li YS (2004) Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos Environ 38:4551–4560. doi:10.1016/j.atmosenv.2004.05.004 Guo H, Cheng HR, Ling ZH, Louie PKK, Ayoko GA (2011) Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J Hazard Mater 188:116–124. doi:10.1016/j.jhazmat.2011.01.081 Ho KF, Lee SC, Guo H, Tsai WY (2004) Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ 322:155–166. doi:10.1016/j.scitotenv.2003.10.004 Hopke PK, Gladney ES, Gordon GE, Zoller WH, Jones AG (1976) The use of multivariate analysis to identify sources of selected elements in the Boston urban aerosol. Atmos Environ (1967) 10:1015–1025. doi:10.1016/0004-6981(76)90211-0 Hopke PK, Barrie LA, Li SM, Cheng MD, Li C, Xie Y (1995) Possible sources and preferred pathways for biogenic and non-sea-salt sulfur for the high Arctic. J Geophys Res 100:16595–16603. doi:10.1029/95JD01712 Kalabokas PD, Hatzianestis J, Bartzis JG, Papagiannakopoulos P (2001) Atmospheric concentrations of saturated and aromatic hydrocarbons around a Greek oil refinery. Atmos Environ 35:2545–2555. doi:10.1016/S1352-2310(00)00423-4 Khan MF, Hirano K, Masunaga S (2010) Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama. Jpn Atmos Environ 44:2646–2657 Khan MF, Latif MT, Amil N, Juneng L, Mohamad N, Nadzir MSM, Hoque HMS (2015) Characterization and source apportionment of particle number concentration at a semi-urban tropical environment. Environ Sci Pollut Res 22:13111–13126. doi:10.1007/s11356-015-4541-4 Kim K-H et al (2012) Volatile organic compounds in ambient air at four residential locations in Seoul, Korea. Environ Eng Sci 29:875–889. doi:10.1089/ees.2011.0280 Kim K, Chun H-H, Jo W (2015) Multi-year evaluation of ambient volatile organic compounds: temporal variation, ozone formation, meteorological parameters, and sources. Environ Monit Assess 187:1–12. doi:10.1007/s10661-015-4312-1 Kuo C-P, Liao H-T, Chou CCK, Wu C-F (2014) Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Sci Total Environ 472:880–887. doi:10.1016/j.scitotenv.2013.11.114 Lee SC, Chiu MY, Ho KF, Zou SC, Wang X (2002) Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48:375–382. doi:10.1016/S0045-6535(02)00040-1 Lin T-Y, Sree U, Tseng S-H, Chiu KH, Wu C-H, Lo J-G (2004) Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmos Environ 38:4111–4122. doi:10.1016/j.atmosenv.2004.04.025 Liu C, Xu Z, Du Y, Guo H (2000) Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China. Atmos Environ 34:4459–4466. doi:10.1016/S1352-2310(00)00102-3 Liu P-WG, Yao Y-C, Tsai J-H, Hsu Y-C, Chang L-P, Chang K-H (2008) Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci Total Environ 398:154–163. doi:10.1016/j.scitotenv.2008.02.053 Loreto F, Fares S (2013) Biogenic volatile organic compounds and their impacts on biosphere–atmosphere interactions. Climate Change, air pollution and global challenges: knowledge, understanding and perspectives from forest research, Elsevier Physical Sciences Series “Developments in Environmental Science” vol 13, pp 57–68 Majumdar D, Mukherjee AK, Sen S (2009) Apportionment of sources to determine vehicular emission factors of BTEX in Kolkata, India. Water Air Soil Pollut 201:379–388. doi:10.1007/s11270-008-9951-1 McCarthy MC, Aklilu Y-A, Brown SG, Lyder DA (2013) Source apportionment of volatile organic compounds measured in Edmonton, Alberta. Atmos Environ 81:504–516. doi:10.1016/j.atmosenv.2013.09.016 Mishra N, Bartsch J, Ayoko GA, Salthammer T, Morawska L (2015) Volatile organic compounds: characteristics, distribution and sources in urban schools. Atmos Environ 106:485–491. doi:10.1016/j.atmosenv.2014.10.052 Murphy BL, Morrison RD (2007) Introduction to environmental forensics. Academic Press, London Mustaffa N, Latif M, Ali M, Khan M (2014) Source apportionment of surfactants in marine aerosols at different locations along the Malacca Straits. Environ Sci Pollut Res 21:6590–6602. doi:10.1007/s11356-014-2562-z Nguyen HT, Kim K-H, Kim M-Y (2009) Volatile organic compounds at an urban monitoring station in Korea. J Hazard Mater 161:163–174. doi:10.1016/j.jhazmat.2008.03.066 Pandey K, Sahu L (2014) Emissions of volatile organic compounds from biomass burning sources and their ozone formation potential over India. Curr Sci 106:1270 Parra MA, Elustondo D, Bermejo R, Santamaría JM (2009) Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO2) in a medium size city in Northern Spain. Sci Total Environ 407:999–1009. doi:10.1016/j.scitotenv.2008.10.032 Pekey B, Yılmaz H (2011) The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchem J 97:213–219. doi:10.1016/j.microc.2010.09.006 Sosa ER, Bravo AH, Mugica AV, Sanchez AP, Bueno LE, Krupa S (2009) Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City. Environ Pollut 157:1038–1044. doi:10.1016/j.envpol.2008.09.051 Sahu L (2012) Volatile organic compounds and their measurements in the troposphere. Curr Sci 102:1645–1649 Sahu LK, Saxena P (2015) High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmos Res 164–165:84–94. doi:10.1016/j.atmosres.2015.04.021 Schauer JJ, Cass GR (2000) Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol 34:1821–1832. doi:10.1021/es981312t Shen X, Zhao Y, Chen Z, Huang D (2013) Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmos Environ 68:297–314. doi:10.1016/j.atmosenv.2012.11.027 Srivastava A (2005) Variability in voc concentrations in an urban area of Delhi. Environ Monit Assess 107:363–373. doi:10.1007/s10661-005-3546-8 Srivastava A, Joseph AE, Devotta S (2006) Volatile organic compounds in ambient air of Mumbai—India. Atmos Environ 40:892–903. doi:10.1016/j.atmosenv.2005.10.045 Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ 19:9–25. doi:10.1016/0004-6981(85)90132-5 Thurston GD, Ito K, Lall R (2011) A source apportionment of U.S. fine particulate matter air pollution. Atmos Environ 45:3924–3936 Tiwari V, Hanai Y, Masunaga S (2010) Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama. Jpn Air Qual Atmos Health 3:65–75. doi:10.1007/s11869-009-0052-0 Tran NK, Steinberg SM, Johnson BJ (2000) Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the Southwestern US. Atmos Environ 34:1845–1852. doi:10.1016/S1352-2310(99)00071-0 Tsai WY, Chan LY, Blake DR, Chu KW (2006) Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai. Atmos Chem Phys 6:3281–3288 Yamamoto N, Okayasu H, Murayama S, Mori S, Hunahashi K, Suzuki K (2000) Measurement of volatile organic compounds in the urban atmosphere of Yokohama, Japan, by an automated gas chromatographic system. Atmos Environ 34:4441–4446. doi:10.1016/S1352-2310(00)00168-0