Computing robust basestock levels
Tài liệu tham khảo
M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, Z. Liu, Universal stability results for greedy contention–resolution protocols, in: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Burlington, VT, 1996, pp. 380–389
A. Atamtürk, M. Zhang, Two-stage robust network flow and design under demand uncertainty, Research Report BCOL.04.03, Department of IEOR, University of California at Berkeley, 2004
D. Bienstock, N. Özbay, Computing robust basestock levels—extended version, CORC Report TR-2005-09, Columbia University, 2005
Benders, 1962, Partitioning procedures for solving mixed variables programming problems, Numerische Mathematik, 4, 238, 10.1007/BF01386316
Ben-Tal, 2004, Adjusting robust solutions of uncertain linear programs, Mathematical Programming, 99, 351, 10.1007/s10107-003-0454-y
Ben-Tal, 2005, Retailer–supplier flexible commitments contracts: A robust optimization approach, MSOM, 7, 248, 10.1287/msom.1050.0081
Ben-Tal, 1998, Robust convex optimization, Mathematics of Operations Research, 23, 769, 10.1287/moor.23.4.769
Ben-Tal, 1999, Robust solutions of uncertain linear programs, Operations Research Letters, 25, 1, 10.1016/S0167-6377(99)00016-4
Ben-Tal, 2000, Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming Series A, 88, 411, 10.1007/PL00011380
Bertsimas, 2003, Price of robustness, Operations Research, 52, 35, 10.1287/opre.1030.0065
Bertsimas, 2006, A robust optimization approach to inventory theory, Operations Research, 54, 150, 10.1287/opre.1050.0238
A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, D.P. Williamson, Adversarial queueing theory, in: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp. 376–385
Clark, 1960, Optimal policies for a multi-echelon inventory problem, Management Science, 6, 475, 10.1287/mnsc.6.4.475
Cruz, 1991, A calculus for network delay, part I: Network elements in isolation, IEEE Transactions on Information Theory, 37, 114, 10.1109/18.61109
Ehrhart, 1984, (s,S) policies for a dynamic inventory model with stochastic leadtimes, Operations Research, 32, 121, 10.1287/opre.32.1.121
Federgruen, 1984, An efficient algorithm for computing optimal (s,S) policies, Operations Research, 32, 1268, 10.1287/opre.32.6.1268
Gallego, 2007, Inventory management under highly uncertain demand, Operations Research Letters, 35, 281, 10.1016/j.orl.2006.03.012
Gallego, 1993, The distribution free newsboy problem: Review and extensions, Journal of Operations Research Society, 44, 825, 10.1057/jors.1993.141
Gallego, 2001, Minimax analysis for finite horizon inventory models, IIE Transactions, 33, 861, 10.1080/07408170108936879
Grötschel, 1993
D. Iglehart, Dynamic programming and stationary analysis in inventory problems, in: Multistage Inventory Models and Techniques, 1963, Stanford University, Stanford, CA (Chapter 1)
Iglehart, 1963, Optimality of (s,S) policies in infinite horizon dynamic inventory problem, Management Science, 9, 259, 10.1287/mnsc.9.2.259
Moon, 1994, Distribution free procedures for some inventory models, Journal of Operations Research Society, 45, 651, 10.1057/jors.1994.103
A. Muharremoglu, J. Tsitsiklis, A single unit decomposition approach to multi-echelon inventory systems, Working paper, 2001
Nemhauser, 1988
N. Özbay, Robust inventory problems, Ph.D. Thesis, Columbia University, 2006
Scarf, 1958, A min–max solution of an inventory problem
A. Thiele, Robust dynamic optimization: A distribution-free approach, 2005 (manuscript)
Veinott, 1966, On the optimality of (s,S) inventory policies: New conditions and a new proof, SIAM Journal on Applied Mathematics, 14, 1067, 10.1137/0114086
Zipkin, 2000