Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính Toán Trung Điểm Riemann trên Các Manifold Hadamard
Tóm tắt
Trong bài báo này, chúng tôi thực hiện phương pháp giảm dần lớn nhất để tính toán trung điểm Riemann trên các manifold Hadamard. Để đạt được điều này, chúng tôi mở rộng tính hội tụ của phương pháp đến bối cảnh Hadamard cho các hàm liên tục khả vi (có thể không lồi) thỏa mãn tính chất Kurdyka–Łojasiewicz. Một số thí nghiệm số được thực hiện để tính toán trung điểm $$L^1$$ và $$L^2$$ trong bối cảnh các ma trận đối xứng xác định dương được trình bày sử dụng hai quy tắc kích thước bước khác nhau.
Từ khóa
#Trung điểm Riemann #Manifold Hadamard #Phương pháp giảm dần lớn nhất #Hàm liên tục khả vi #Ma trận đối xứng xác định dươngTài liệu tham khảo
Karcher, H.: Riemannian Center of Mass and so called Karcher mean, pp. 1–3. arXiv:1407.2087 (2014)
Grove, K., Karcher, H.: How to conjugate \(C^1\)-close group actions. Math. Z. 132(1), 11–20 (1973)
Kum, S., Sangwoon, Y.: Incremental gradient method for Karcher mean on symmetric cones. J. Optim. Theory Appl. 172, 141–155 (2017)
Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438, 1700–1710 (2013)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)
Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82, 273–296 (2006)
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 328–347 (2007)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006)
Lang, S.: Fundamentals of Differential Geometry. Springer, Berlin (1998)
Kristály, A., Morosanu, G., Róth, A.: Optimal placement of a deposit between markets: Riemannian–Finsler geometrical approach. J. Optim. Theory Appl. 139(2), 263–276 (2008)
Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24, 1542–1566 (2014)
Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the riemannian center of mass. SIAM J. Control Optim. 51, 2230–2260 (2013)
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)
Hosseini, S., Pouryayevali, M.R.: On the metric projection onto prox-regular subsets of Riemannian manifolds. Proc. Am. Math. Soc. 141, 233–244 (2013)
Kristály, A.: Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures Appl. 101(5), 660–688 (2014)
Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)
Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)
Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50, 2486–2514 (2012)
Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. Theory Methods Appl. 52(5), 1491–1498 (2003)
Wang, X., Li, C., Wang, J., Yao, J.C.: Linear convergence of subgradient algorithm for convex feasibility on Riemannian manifolds. SIAM J. Optim. 25, 2334–2358 (2015)
Luenberger, D.G.: The gradient projection method along geodesics. Manag. Sci. 18, 620–631 (1972)
Gabay, D.: Minimizing a differentiable function over a differentiable manifold. J. Optim. Theory Appl. 37, 177–219 (1982)
Udriste, C.: Convex functions and optimization algorithms on Riemannian manifolds. In: Mathematics and its Applications, vol. 297. Kluwer Academic Publishers, Dordrecht (1994)
Smith, S.T.: Optimization Techniques on Riemannian Manifolds, vol. 3, pp. 113–146. Fields Institute Communications, American Mathematical Society, Providence (1994)
Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbb{R}^n\). Kluwer Academic Publishers, Dordrecht (1997)
Cruz Neto, J.X., Lima, L.L., Oliveira, P.R.: Geodesic algorithms in riemannian geometry. Balkan J. Geom. Appl. 3, 89–100 (1998)
Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16, 531–547 (2005)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. Ser. A 137, 91–129 (2013)
Lageman, C.: Convergence of gradient-like dynamical systems and optimization algorithms. Ph.D. thesis, Universitat Wurzburg (2007)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, 87–89 (1963)
Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48, 769–783 (1998)
Bolte, J., Danillidis, J.A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116(1–2), 5–16 (2009)
Bolte, J., Danillidis, J.A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18, 556–572 (2007)
Kurdyka, K., Mostowki, T., Parusinki, A.: Proof of the gradient conjecture of R. Thom. Ann. Math. 152, 763–792 (2000)
Bento, G. C., Cruz Neto, J. X., Oliveira, P. R.: Convergence of inexact descent methods for nonconvex optimization on Riemannian manifolds, pp. 1–28. arXiv:1103.4828v1 (2011)
Schneider, R., Uschmajew, A.: Convergence Results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015)
Cruz Neto, J.X., Oliveira, P.R., Soares Jr., P.A., Soubeyran, A.: Learning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on riemannian manifolds. J. Convex Anal. 20, 395–438 (2013)
Hirch, M.W.: Differential Topology. Spring, New York (1976)
Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)
Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hung. 94, 307–320 (2002)
Rothaus, O.S.: Domains of positivity. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 24, 189–235 (1960)
Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2, 333–361 (2002)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25, 423–444 (2006)