Computing Proximal Points of Convex Functions with Inexact Subgradients

Warren Hare1, Chayne Planiden1
1Mathematics, University of British Columbia, Kelowna, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Khayyal, F., Kyparisis, J.: Finite convergence of algorithms for nonlinear programs and variational inequalities. J. Optim. Theory Appl. 70(2), 319–332 (1991)

Bagirov, A.M., Karasözen, B., Sezer, M.: Discrete gradient method: derivative-free method for nonsmooth optimization. J. Optim. Theory Appl. 137(2), 317–334 (2008)

Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.: Numerical optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)

Coleman, T.F., Hulbert, L.: A Globally and Superlinearly Convergent Algorithm for Convex Quadratic Programs with Simple Bounds. Technical report, Cornell University (1990)

Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Fixed-point algorithms for inverse problems in science and engineering, pp 185–212. Springer (2011)

Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization, volume 8 Siam (2009)

Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62(1-3), 261–275 (1993)

de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Program. 148(1-2), 241–277 (2014)

Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

Rey, P.A., Sagastizábal, C.: Dynamical adjustment of the prox-parameter in bundle methods. JOURNAL = Optimization. Optimization A Journal of Mathematical Programming and Operations Research 51(2), 423–447 (2002)

Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Program. 50(1-3), 359–366 (1991)

Fisher, M.L.: An applications oriented guide to Lagrangian relaxation. Interfaces 15(2), 10–21 (1985)

Gupal, A.M.: A method for the minimization of almost-differentiable functions. Cybern. Syst. Anal. 13(1), 115–117 (1977)

Hare, W.: Numerical analysis of 𝓥𝓤-decomposition, 𝓤-gradient, and 𝓤-Hessian approximations. SIAM J. Optim. 24(4), 1890–1913 (2014)

Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax problems. Comput. Optim. Appl. 56(1), 1–38 (2013)

Hare, W., Nutini, J., Tesfamariam, S.: A survey of non-gradient optimization methods in structural engineering. Adv. Eng. Softw. 59, 19–28 (2013)

Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math Program 116(1-2, Ser. B), 221–258 (2009)

Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20(5), 2442–2473 (2010)

Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63 (1), 1–28 (2016)

Hintermüller, M.: A proximal bundle method based on approximate subgradients. Comput. Optim. Appl. 20(3), 245–266 (2001)

Hiriart-Urruty, J.B., Lemarechal, C.: Convex analysis and minimization algorithms. Grundlehren der mathematischen Wissenschaften, 305 (1993)

Kalvelagen, E.: Benders decomposition with gams (2002)

Karas, E., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle-filter method for nonsmooth convex constrained optimization. Math. Program. 116(1-2), 297–320 (2009)

Kelley, C.T.: Iterative methods for optimization, volume 18 Siam (1999)

Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Program. 46(1-3), 105–122 (1990)

Kiwiel, K.C.: Approximations in proximal bundle methods and decomposition of convex programs. J. Optim. Theory Appl. 84(3), 529–548 (1995)

Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20(4), 1983–1994 (2010)

Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program. 76(3), 393–410 (1997)

Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program., 1–46 (2008)

Lukšan, L., Vlcek, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technická zpráva 798 (2000)

Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opé,rationnelle 4(Ser. R-3), 154–158 (1970)

Mayer, J.: Stochastic linear programming algorithms: A comparison based on a model management system, volume 1. CRC Press (1998)

Mifflin, R., Sagastizábal, C.: A VU-algorithm for convex minimization. Math Program. 104(2-3, Ser. B), 583–608 (2005)

Moreau, J.-J.: Propriétés des applications “prox”. C. R. Acad. Sci. Paris 256, 1069–1071 (1963)

Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optimization 14(5), 877–898 (1976)

Rockafellar, R.T., Wets, R.J.: Variational analysis. Springer, Berlin (1998)

Sagastizábal, C.: Composite proximal bundle method. Math. Program. 140(1), 189–233 (2013)

Shen, J., Liu, X.-Q., Guo, F.-F., Wang, S.-X.: An approximate redistributed proximal bundle method with inexact data for minimizing nonsmooth nonconvex functions. Math. Probl. Eng., 2015 (2015)

Shen, J., Xia, Z.-Q., Pang, L.-P.: A proximal bundle method with inexact data for convex nondifferentiable minimization. Nonlinear Analysis Theory, Methods & Applications 66(9), 2016–2027 (2007)

Solodov, M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18(1), 242–259 (2007)

Sun, W.-Y., Sampaio, R.J.B., Candido, M.A.B.: Proximal point algorithm for minimization of dc function. Journal of Computational Mathematics-International Edition 21(4), 451–462 (2003)

Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Program. 125(2), 263–295 (2010)

Wang, C., Xu, A.: An inexact accelerated proximal gradient method and a dual newton-cg method for the maximal entropy problem. J. Optim. Theory Appl. 157(2), 436–450 (2013)