Computer simulation of cervical tissue response to a hydraulic dilator device

Theoretical Biology and Medical Modelling - Tập 10 - Trang 1-9 - 2013
Nenad Filipovic1, Dalibor Nikolic1, Igor Saveljic1, Irena Tanaskovic2, Nebojsa Zdravkovic2, Aleksandar Zivanovic2, Petar Arsenijevic2, Branislav Jeremic1, Slobodan Arsenijevic2
1Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
2Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia

Tóm tắt

Classical mechanical dilators for cervical dilation are associated with various complications, such as uterine perforation, cervical laceration, infections and intraperitoneal hemorrhage. A new medical device called continuous controllable balloon dilator (CCBD) was constructed to make a significant reduction in all of the side effects of traditional mechanical dilation. In this study we investigated numerically the cervical canal tissue response for Hegar and CCBD using our poroelastic finite element model and in-house software development. Boundary conditions for pressure loading on the tissue for both dilators in vivo were measured experimentally. Material properties of the cervical tissue were fitted with experimental in vivo data of pressure and fluid volume or balloon size. Obtained results for effective stresses inside the cervical tissue clearly showed higher stresses for Hegar dilator during dilation in comparison with our CCBD. This study opens a new avenue for the implementation of CCBD device instead of mechanical dilators to prevent cervical injury during cervical dilation.

Tài liệu tham khảo

Newmann S, Dalve-Endres A, Drey EA: Cervical preparation for surgical abortion from 20 to 24 weeks’ gestation. Contraception. 2008, 77: 308-314. 10.1016/j.contraception.2008.01.004. Fox MC, Hayes JL: Cervical preparation for second-trimester surgical abortion prior to 20 weeks of gestation. Contraception. 2007, 76: 486-495. Kloeck FK, Jung H: In vitro release of prostaglandins from the human myometrium under the influence of stretching. Am J Obstet Gynecol. 1973, 115: 1066-1069. Hulka JF, Lefler HT, Anglone A, Lachenbruch PA: A new electronic force monitor to measure factors influencing cervical dilation for vacuum curettage. Am J Obstet Gynecol. 1974, 120: 166-173. Fiala C, Gemzell-Danielsson K, Tang OS, von Hertzen H: Cervical priming with misoprostol prior to transcervical procedures. Int J Gynaecol Obstet. 2007, 99: 168-171. Danforth DN: The fibrous nature of the human cervix, and its relation to the isthmic segment in gravid and nongravid uteri. Am J Obstet Gynecol. 1947, 53: 541-557. Kleissl HP, van der Rest M, Naftolin F, Glorieux FH, de Leon A: Collagen changes in the human uterine cervix at parturition. Am J Obstet Gynecol. 1978, 130: 748-753. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L: San Antonio JD, mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem. 2002, 277: 4223-4231. 10.1074/jbc.M110709200. Uldbjerg N, Danielsen CC: A study of the interaction in vitro between type I collagen and a small dermatan sulphate proteoglycan. Biochem J. 1988, 251: 643-648. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Lozzo RV: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997, 136: 729-743. 10.1083/jcb.136.3.729. Bailey AJ, Peach CM, Fowler LJ: Chemistry of the collagen cross-links. Isolation and characterization of two intermediate intermolecular cross-links in collagen. Biochem J. 1970, 117: 819-831. Bailey AJ, Robins SP, Balian G: Biological significance of the intermolecular crosslinks of collagen. Nature. 1974, 251: 105-109. 10.1038/251105a0. Aspden RM: Collagen organisation in the cervix and its relation to mechanical function. Coll Relat Res. 1988, 8: 103-112. 10.1016/S0174-173X(88)80022-0. Leppert PC, Cerreta JM, Mandl I: Orientation of elastic fibers in the human cervix. Am J Obstetr Gynecol. 1986, 155: 219-224. 10.1016/0002-9378(86)90115-8. Myers KM, Paskaleva AP, House M, Socrate S: Mechanical and biochemical properties of human cervical tissue. Acta Biomater. 2008, 4: 104-116. 10.1016/j.actbio.2007.04.009. Noakes KF, Pullan AJ, Bissett IP, Cheng LK: Subject specific finite elasticity simulations of the pelvic floor. J Biomech. 2008, 41 (14): 3060-3065. 10.1016/j.jbiomech.2008.06.037. Parente MPL, Jorge RMN, Mascarenhas T, Fernandes AA, Martins JAC: The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. J Biomech. 2009, 42 (9): 1301-1306. 10.1016/j.jbiomech.2009.03.011. House M, Kaplan DL, Socrate S: Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin Perinatol. 2009, 33 (5): 300-307. 10.1053/j.semperi.2009.06.002. Arsenijevic S, Vukcevic-Globarevic G, Volarevic V, Macuzic I, Todorovic P, Tanaskovic I, Mijailovic M, Raicevic S, Jeremic B: Continuous controllable balloon dilation: a novel approach for cervix dilation. Trials. 2012, 13: 10.1186/1745-6215-13-196 Arsenijević S, Cakic N, inventor and assignee: Instrument for fluid injection and dilation probe for implantation in body cavities. European Patent No.1299146. 2004 Uldbjerg N, Ekman G, Malmstrom A, Olsson K, Ulmsten U: Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol. 1983, 147: 662-666. Ekman G, Almstrom H, Granstrom L: Connective tissue in human cervical ripening. The extracellular matrix of the uterus, cervix and fetal membranes: synthesis, degradation and hormonal regulation. Edited by: Leppert P, Woessner F. 1991, New York, USA: Perinatology Press, 87-96. Kojic M, Filipovic N, Mijailovic S: A large strain finite element analysis of cartilage deformation with electrokinetic coupling. Comput Methods Appl Mech Engrg. 2001, 190: 2447-2464. 10.1016/S0045-7825(00)00246-2.