Computer experiments: a review

AStA Advances in Statistical Analysis - Tập 94 Số 4 - Trang 311-324 - 2010
Sigal Levy1, David M. Steinberg1
1Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, 69978, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen, T., Bernshtyn, M.A., Kabiri-Bamoradian, K.: Constructing metamodels for computer experiments. J. Qual. Technol. 35(3), 264–274 (2003)

Bastos, L.S., O’Hagan, A.: Diagnostics for Gaussian process emulators. Technometrics 51, 425–438 (2009)

Bates, R.A., Buck, R.J., Riccomagno, E., Wynn, H.P.: Experimental design and observation for large systems. J. R. Stat. Soc. B 58, 77–111 (1996)

Bayarri, M.J., Berger, J.O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, Parthasarathy, R.J., Paulo, R., Sacks, J., Walsh, D.: Computer model validation with functional output. Ann. Stat. 35(5), 1874–1906 (2007a)

Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin, C.H., Tu, J.: A framework for validation of computer models. Technometrics 49(2), 138–154 (2007b)

Bayarri, M.J., Berger, J.O., Calder, E.S., Dalbey, K., Lunagomes, S., Patra, A.K., Pitman, E.B., Spiller, E.T., Wolpert, R.L.: Using statistical and computer models to quantify volcanic hazards. Technometrics 51, 402–413 (2009a)

Bayarri, M.J., Berger, J.O., Kennedy, M.C., Kottas, A., Paulo, R., Sacks, J., Cafeo, J.A., Lin, C.H., Tu, J.: Predicting vehicle crashworthiness: validation of computer models for functional and hierarchical data. J. Am. Stat. Assoc. 104, 929–943 (2009b)

Bingham, D., Sitter, R.R., Tang, B.: Orthogonal and nearly orthogonal designs for computer experiments. Biometrika 96, 51–65 (2009)

Bursztyn, D., Steinberg, D.M.: Comparison of designs for computer experiments. J. Stat. Plann. Inference 136, 1103–1119 (2006)

Chen, V.C.P., Tsui, K.L., Barton, R.R., Meckesheimer, M.: A review on design modeling and applications of computer experiments. IIE Trans. 38(4), 273–291 (2006)

Cheng, R.C.H., Kleijnen, J.P.C.: Improved design of queueing simulation experiments with highly heteroscedastic responses. Oper. Res. 47, 762–777 (1999)

Craig, P.S., Goldstein, M., Rougier, J.C., Seheult, A.H.: Bayesian forecasting for complex systems using computer simulators. J. Am. Stat. Assoc. 96, 717–729 (2001)

Cressie, N.: Statistics for Spatial Data. Wiley, New York (1993)

Cumming, J.A., Goldstein, M.: Small sample Bayesian designs for complex high-dimensional models based on information gained using fast approximations. Technometrics 51, 377–388 (2009)

Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: Bayesian prediction of deterministic functions, with application to the design and analysis of computer experiments. J. Am. Stat. Assoc. 86, 953–963 (1991)

Da Veiga, S., Wahl, F., Gamboa, F.: Local polynomial estimation for sensitivity analysis on models with correlated inputs. Technometrics 51, 452–463 (2009)

Drignei, D.: Empirical Bayesian analysis for high-dimensional computer output. Technometrics 48(2), 230–240 (2006)

Fang, K.T., Hickernell, F.J.: Uniform experimental designs. In: Ruggeri, F., Kenett, R., Faltin, F.W. (eds.) Encyclopedia of Quality and Reliability, vol. 3, pp. 2037–2040. Wiley, New York (2007)

Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman & Hall/CRC, Boca Raton (2006)

Fang, K.T., Lin, D.K.J., Winker, P., Zhang, Y.: Uniform design: theory and application. Technometrics 42(3), 237–248 (2000)

Faraway, J.J.: Regression analysis for a functional response. Technometrics 39(3), 254–261 (1997)

Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–141 (1991)

Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981)

Goldstein, M., Rougier, J.C.: Bayes linear calibrated prediction for complex systems. J. Am. Stat. Assoc. 101, 1132–1143 (2006)

Gramacy, R.B., Lee, H.K.H.: Bayesian treed Gaussian process models with an application to computer modeling. J. Am. Stat. Assoc. 103, 1119–1130 (2008)

Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

Han, G., Santner, T.J., Notz, W.I., Bartel, D.L.: Prediction for computer experiments having quantitative and qualitative input variables. Technometrics 51, 278–288 (2009a)

Han, G., Santner, T.J., Rawlinson, J.J.: Simultaneous determination of tuning and calibration parameters for computer experiments. Technometrics 51, 464–474 (2009b)

Higdon, D., Gattiker, J., Williams, B., Rightley, M.: Computer model calibration using high dimensional output. Technical report, Los Alamos National Laboratory (2007)

Hung, Y., Joseph, V.R., Melkote, S.N.: Design and analysis of computer experiments with branching and nested factors. Technometrics 51, 354–365 (2009)

Johnson, M.E., Moore, I.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plann. Inference 26, 131–148 (1990)

Jones, B., Johnson, R.T.: Design and analysis for the Gaussian process model. Qual. Reliab. Eng. Int. 25, 515–550 (2009)

Joseph, R.V., Hung, Y., Sudjianto, A.: Blind kriging: a new method for developing metamodels. J. Mech. Des. 130(3), 1–8 (2008)

Jourdan, A., Franco, J.: Optimal Latin hypercube designs for the Kullback–Leibler criterion. Adv. Stat. Anal. (2010). doi: 10.1007/s10182-010-0145-y

Kennedy, M.C., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1), 1–13 (2000)

Lefebvre, S., Roblin, A., Varet, S., Durand, G.: Metamodeling of aircraft infrared signature dispersion. Adv. Stat. Anal. (2010). doi: 10.1007/s10182-010-0146-x

Lemieux, C.: Monte Carlo and Quasi-Monte Carlo sampling. Springer, New York (2009)

Levy, S.: The analysis of time dependent computer experiments. Unpublished Ph.D. dissertation, Tel-Aviv University (2008)

Lin, C.D., Mukerjee, R., Tang, B.: Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika 96, 243–247 (2009)

Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., Ye, K.Q.: Variable selection for Gaussian process models in computer experiments. Technometrics 48, 478–490 (2006)

Loeppky, J.L., Sacks, J., Welch, W.J.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51, 366–376 (2009)

Matheron, G.: Principals of geostatistics. Econ. Geol. 58, 1246–1266 (1963)

McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

Molina, G., Bayarri, M.J., Berger, J.O.: Statistical inverse analysis for a network micosimulator. Technometrics 47(4), 388–398 (2005)

Neumann Ben-Ari, E., Steinberg, D.M.: Modeling data from computer experiments: an empirical comparison of kriging with MARS and projection pursuit regression. Qual. Eng. 19, 327–338 (2007)

Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)

O’Hagan, A.: Discussion of Sacks, Welch, Mitchell and Wynn. Stat. Sci. 4, 430–432 (1989)

Owen, A.B.: Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2, 439–52 (1992)

Petelet, M., Iooss, B., Asserin, O., Loredo, A.: Latin hypercube sampling with inequality constraints. Adv. Stat. Anal. (2010). doi: 10.1007/s10182-010-0144-z

Pistone, G., Vicario, G.: Comparing and generating Latin hypercube designs in kriging models. Adv. Stat. Anal. (2010). doi: 10.1007/s10182-010-0142-1

Qian, P.: Nested Latin hypercube designs. Biometrika 96(4), 957–970 (2009)

Qian, P., Wu, C.F.J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192–204 (2008)

Qian, P., Wu, H., Wu, C.F.J.: Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50, 383–396 (2008)

Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005)

Ratto, M., Pagano, A.: Using recursive algorithms for efficient identification of smoothing spline ANOVA models. Adv. Stat. Anal. (2010). doi: 10.1007/s10182-010-0148-8

Reich, B.J., Storlie, C.B., Bondell, H.D.: Variable selection in Bayesian smoothing spline ANOVA models: application to deterministic computer codes. Technometrics 51, 110–120 (2009)

Roache, P.J.: Verification of codes and calculations. AIAA J. 36(5), 696–702 (1998)

Rougier, J.: Efficient emulators for multivariate deterministic functions. J. Comput. Graph Stat. 17, 827–843 (2007)

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989)

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, New York (2008)

Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

Sargent, R.G.: Verification and validation of simulation models. In: Mason, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) Proceedings of the 2008 Winter Simulation Conference, pp. 157–169 (2008)

Schlesinger, S., Crosbie, R.E., Gagné, R.E., Innis, G.S., Lalwani, C.S., Loch, J., Sylvester, R.J., Wright, R.D., Kheir, N., Bartos, D.: Terminology for model credibility. Simulation 32, 103–104 (1975)

Shewry, M.C., Wynn, H.P.: Maximum entropy sampling. J. Appl. Stat. 14, 165–170 (1987)

Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112 (1967)

Stein, M.L.: Discussion of Sacks, Welch, Mitchell and Wynn. Stat. Sci. 4, 432–433 (1989)

Steinberg, D.M., Bursztyn, D.: Data analytic tools for understanding random field regression models. Technometrics 46, 411–420 (2004)

Steinberg, D.M., Lin, D.K.J.: A construction method for orthogonal Latin hypercube designs. Biometrika 93, 279–288 (2006)

Taddy, M.A., Lee, H.K.H., Gray, G.A., Griffin, J.D.: Bayesian guided pattern search for robust local optimization. Technometrics 51, 389–401 (2009)

Tang, B.: Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88, 1392–1397 (1993)

Wagner, T., Bröcker, C., Saba, N., Biermann, D., Matzenmiller, A., Steinhoff, K.: Modelling of a thermomechanically coupled forming process based on functional outputs from a finite element analysis and from experimental measurements. Adv. Stat. Anal. (2010). doi: 10.1007/s10182-010-0149-7

Wang, S., Chen, W., Tsui, K.-L.: Bayesian validation of computer models. Technometrics 51, 439–451 (2009)

Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting and computer experiments. Technometrics 34, 15–25 (1992)

Young, P.C.: The identification and estimation of nonlinear stochastic systems. In: Mees, A.I. (ed.) Nonlinear Dynamics and Statistics. Birkhauser, Boston (2001)