Computer algebra for guaranteed accuracy. How does it help?
Tóm tắt
Từ khóa
Tài liệu tham khảo
G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd edition. The Johns Hopkins University Press Baltimore, Maryland, 1996.
N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
N.J. Higham, M. Konstantinov, V. Mehrmann and P. Petkov, The sensitivity of computational control problems. IEEE Control Systems Magazine,24 (2004), 28–43.
W. Krandick and S. Rump, Foreword of the guest editors. Special issue on validated numerical methods and computer algebra. Journal of Symbolic Computation,24 (1997), 625–626.
W. Krandick and S. Rump (eds.), Special issue on validated numerical methods and computer algebra. Journal of Symbolic Computation, Vol. 24, No. 6, Academic Press, 1997.
U.W. Kulisch and W.L. Miranker (eds.), A New Approach to Scientific Computation. Notes and Reports in Computer Science and Applied Mathematics, Vol. 7, Academic Press, New York, 1983.
J. Rohn, S.M. Rump and T. Yamamoto (eds.), Special issue on linear algebra in selfvalidating methods, Linear Algebra and Its Applications, Vol. 324, No. 1–3, Elsevier, 2001.
R.E. Moore, Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1996.
A. Neumaier, Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, 1990.
T. Sunaga, Theory of interval algebra and its application to numerical analysis. RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geometry, Vol. 2, K. Kondo (ed.), Gakujutsu Bunken Fukyu-kai, Tokyo, Japan, 1958, 29–46 (547–564).
G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, New York, NY, 1983.
R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing,4 (1969), 187–201.
R.E. Moore, A test for existence of solutions to nonlinear systems. SIAM Journal on Numerical Analysis,14 (1977), 611–615.
R.L. Muhanna and R.L. Mullen (eds.), Special issue on reliable engineering computing. Reliable Computing, Vol. 12, No. 6-Vol. 13, No. 2, Springer, Netherlands, 2006-2007.
B. Buchberger, C. Jansson, S. Oishi, M. Plum and S.M. Rump, 05391 executive summary— Numerical and algebraic algorithms and computer-assisted proofs. Algebraic and Numerical Algorithms and Computer-Assisted Proofs, B. Buchberger, S. Oishi, M. Plum and S.M. Rump (eds.), Dagstuhl Seminar Proceedings, No. 05391, Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 2nd edition. Cambridge University Press, Cambridge, 2003.
S.M. Rump, Algebraic computation, numerical computation and verified inclusions. Trends in Computer Algebra, R. Janssen (ed.), Lecture Notes in Computer Science, Vol. 296, Springer-Verlag, New York, NY, 1988, 177–197.
S.M. Rump, Computer-assisted proofs and self-validating methods. Accuracy and Reliability in Scientific Computing, B. Einarsson (ed.), Software, Environments, Tools, Vol. 18 Chapter 10, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005, 195–240.
A.G. Akritas, Elements of Computer Algebra with Applications. John Wiley & Sons, New York, NY, 1989.
G.E. Collins and W. Krandick, An efficient algorithm for infallible polynomial complex root isolation. Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’92, P.S. Wang (ed.), ACM Press, New York, NY, 1992, 189–194.
H. Hong, An efficient method for analyzing the topology of plane real algebraic curves. Mathematics and Computers in Simulation,42 (1996), 571–582.
S. Ratschan, Approximate quantified constraint solving by cylindrical box decomposition. Reliable Computing,8 (2002), 21–42.
A.W. Strzebonski, Cylindrical algebraic decomposition using validated numerics, Journal of Symbolic Computation,41 (2006), 1021–1038.
F.R. Gantmacher, The Theory of Matrices, Vol. 2. Chelsea Publishing Company, New York, NY, 1960.
K. Ogata, Modern Control Engineering, 4th edition. Prentice Hall, Upper Saddle River, NJ, 2002.
J. Ackermann, Robust Control: Systems with Uncertain Physical Parameters. Springer-Verlag, London, 1993.
S.P. Bhattacharyya, H. Chapellat and L.H. Keel, Robust Control: The Parametric Approach Prentice-Hall, Upper Saddle River, NJ, 1995.
L. González-Vega, T. Recio, H. Lombardi and M.-F. Roy, Sturm-Habicht sequences determinants and real roots of univariate polynomials. Quantifier Elimination and Cylindrical Algebraic Decomposition, B.F. Caviness and J.R. Johnson (eds.), Texts and Monographs in Symbolic Computation, Springer, Wien, New York, 1998, 300–316.
H. Anai, H. Yanami, S. Hara and K. Sakabe, Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox. Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2004, 1540–1545.
H. Anai and S. Hara, A parameter space approach to fixed-order robust controller synthesis by quantifier elimination. International Journal of Control,79 (2006), 1321–1330.
R.E. Moore, Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics, Vol. 2, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979.
L. Jaulin, M. Kieffer, O. Didrit and É. Walter, Applied Interval Analysis. Springer-Verlag, London, 2001.
D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms, 3rd edition. Springer, New York, NY, 2007.
T. Becker and V. Weispfenning, Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, Vol. 141, Springer-Verlag, New York, NY, 1993.
M. Kanno and M.C. Smith, Validated numerical computation of the ℒ∞-norm for linear dynamical systems. Journal of Symbolic Computation,41 (2006), 697–707.
K. Zhou, J.C. Doyle and K. Glover, Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ, 1996.
G. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Proceedings Second GI Conference on Automata Theory and Formal Languages, Lecture Notes in Computer Science, Vol. 33, Springer-Verlag, Berlin, 1975, 134–183.
E.D. Popova and W. Krämer, Visualizing parametric solution sets. BIT Numerical Mathematics,48 (2008), 95–115.
H. Anai, S. Hara, M. Kanno and K. Yokoyama, Parametric polynomial spectral factorization using the sum of roots and its application to a control design problem. Journal of Symbolic Computation,44 (2009), 703–725.
A.H. Sayed and T. Kailath, A survey of spectral factorization methods. Numerical Linear Algebra with Applications,8 (2001), 467–496.
M. Kanno, H. Anai and K. Yokoyama, On the relationship between the sum of roots with positive real parts and polynomial spectral factorization. Numerical Methods and Applications—6th International Conference, NMA 2006, T. Boyanov et al. (eds.), Borovets, Bulgaria, August, 2006; Revised Papers. Lecture Notes in Computer Science, Vol. 4310, Springer-Verlag, Heidelberg, 2007, 320–328.
M. Noro and K. Yokoyama, A modular method to compute the rational univariate representation of zero-dimensional ideals. Journal of Symbolic Computation,28 (1999), 243–264.
J.G. Faugère, P. Gianni, D. Lazard and T. Mora, Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation,16 (1993), 329–344.
M. Kanno, S. Hara, H. Anai and K. Yokoyama, Sum of roots, polynomial spectral factorization, and control performance limitations. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, USA, 2007, 2968–2973.
S. Hara and M. Kanno, Sum of roots characterization for ℋ2 control performance limitations. SICE Journal of Control, Measurement, and System Integration,1 (2008), 58–65.