Computer-aided sleep staging using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and bootstrap aggregating
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arzi, 2000, Humans can learn new information during sleep, Nat. Neurosci., 15, 1460, 10.1038/nn.3193
Mahowald, 2005, Insights from studying human sleep disorders, Nature, 437, 1279, 10.1038/nature04287
Rechtschaffen, 1968
Iber, 2005
Moser, 2009, Sleep classification according to aasm and rechtschaffen & kales: effects on sleep scoring parameters, Sleep, 32, 139, 10.1093/sleep/32.2.139
Penzel, 2000, Computer based sleep recording and analysis, Sleep Med. Rev., 4, 131, 10.1053/smrv.1999.0087
Lin, 2008, Noninvasive neural prostheses using mobile and wireless EEG, Proc. IEEE, 96, 1167, 10.1109/JPROC.2008.922561
Liang, 2012, Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models, IEEE Trans. Instrum. Meas., 61, 1649, 10.1109/TIM.2012.2187242
Motamedi-Fakhr, 2014, Signal processing techniques applied to human sleep EEG signals a review, Biomed. Signal Process. Control, 10, 21, 10.1016/j.bspc.2013.12.003
Agarwal, 2001, Computer-assisted sleep staging, IEEE Trans. Biomed. Eng., 48, 1412, 10.1109/10.966600
Held, 2006, Extracting fuzzy rules from polysomnographic recordings for infant sleep classification, IEEE Trans. Biomed. Eng., 53, 1954, 10.1109/TBME.2006.881798
Krakovská, 2011, Automatic sleep scoring: a search for an optimal combination of measures, Artif. Intell. Med., 53, 25, 10.1016/j.artmed.2011.06.004
Ronzhina, 2012, Sleep scoring using artificial neural networks, Sleep Med. Rev., 16, 251, 10.1016/j.smrv.2011.06.003
Hsu, 2013, Automatic sleep stage recurrent neural classifier using energy features of EEG signals, Neurocomputing, 104, 105, 10.1016/j.neucom.2012.11.003
Zhu, 2014, Analysis and classification of sleep stages based on difference visibility graphs from a single channel EEG signal, IEEE J. Biomed. Health Inf., PP
Imtiaz, 2014, A low computational cost algorithm for REM sleep detection using single channel EEG, Ann. Biomed. Eng., 42, 2344, 10.1007/s10439-014-1085-6
Koch, 2014, Automatic sleep classification using a data-driven topic model reveals latent sleep states, J. Neurosci. Methods, 235, 130, 10.1016/j.jneumeth.2014.07.002
Humeau-Heurtier, 2015, Analysis of laser speckle contrast images variability using a novel empirical mode decomposition: Comparison of results with laser doppler flowmetry signals variability, IEEE Trans. Med. Imaging, 34, 618, 10.1109/TMI.2014.2364079
Goldberger, 2000, Components of a new research resource for complex physiologic signals, Circulation, 101, e215, 10.1161/01.CIR.101.23.e215
Kemp, 2000, Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG, IEEE Trans. Biomed. Eng., 47, 1185, 10.1109/10.867928
B. Kemp, The sleep-edf database online (2014). URL http://www.physionet.org/physiobank/database/sleep-edf/.
Berthomier, 2007, Automatic analysis of single-channel sleep EEG: validation in healthy individuals, Sleep, 30, 1587, 10.1093/sleep/30.11.1587
Huang, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 454, 903, 10.1098/rspa.1998.0193
Park, 2011, Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition, IEEE Trans. Neural Syst. Rehabil. Eng., 19, 366, 10.1109/TNSRE.2011.2116805
Wang, 2015, The removal of eog artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition, IEEE J. Biomed. Health Inform., PP
Wu, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 01, 1, 10.1142/S1793536909000047
Torres, 2011, A complete ensemble empirical mode decomposition with adaptive noise, 4144
Kruskal, 1952, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583, 10.1080/01621459.1952.10483441
Polikar, 2006, Ensemble based systems in decision making, IEEE Circuits Syst. Mag., 6, 21, 10.1109/MCAS.2006.1688199
Marshall, 2006, Boosting slow oscillations during sleep potentiates memory, Nature, 444, 610, 10.1038/nature05278
tieng Wu, 2015, Assess sleep stage by modern signal processing techniques, IEEE Trans. Biomed. Eng., 62, 1159, 10.1109/TBME.2014.2375292
Iranzo, 2006, Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study, Lancet Neurol., 5, 572, 10.1016/S1474-4422(06)70476-8
Siuly, 2014, A novel statistical algorithm for multiclass EEG signal classification, Eng. Appl. Artif. Intell., 34, 154, 10.1016/j.engappai.2014.05.011
beyli, 2009, Decision support systems for time-varying biomedical signals: EEG signals classification, Expert Syst. Appl., 36, 2275, 10.1016/j.eswa.2007.12.025
Fatma Guler, 2007, Multiclass support vector machines for EEG-signals classification, IEEE Trans. Inf. Technol. Biomed., 11, 117, 10.1109/TITB.2006.879600
Murphy, 2012
Fraiwan, 2012, Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier, Comput. Methods Prog. Biomed., 108, 10, 10.1016/j.cmpb.2011.11.005
Charbonnier, 2011, Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging, Comput. Biol. Med., 41, 380, 10.1016/j.compbiomed.2011.04.001
Kayikcioglu, 2015, Fast and accurate PLS-based classification of EEG sleep using single channel data, Expert Syst. Appl., 42, 7825, 10.1016/j.eswa.2015.06.010
Long, 2014, Analyzing respiratory effort amplitude for automated sleep stage classification, Biomed. Signal Process. Control, 14, 197, 10.1016/j.bspc.2014.08.001