Computations on one-dimensional cellular automata

Springer Science and Business Media LLC - Tập 16 Số 1 - Trang 285-309 - 1996
Johan Mazoyer1
1Laboratoire de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

A.J. Atrubin, An iterative one-dimensional real-time multiplier, Term Paper for App. Math. 298, Stanford University (1962).

R. Balzer, An eight-state minimal time solution to the Firing Squad Synchronization Problem, Inf. and Contr. 10(1967)22–42.

S. Cole, Real-time computation byn-dimensional arrays, IEEE Trans. Comp. 4(1969)349–365.

C. Choffrut and C. Čulik II, On real-time cellular automata and trellis automata, Actae Informaticae (1984) 393–407.

C. Čulik II, J. Gruska and A. Salomaa, Systolic treillis automaton (for VLSI), Research Report CS-81.34, Department of Computer Science, University of Waterloo (1981).

C. Čulik II, Variation of the Firing Squad Synchronization Problem, Inf. Proc. Lett. (1989) 152–157.

C. Dyer, One-way bounded cellular automata, Inf. and Contr. 44(1980)54–69.

P.C. Fisher, Generation on primes by a one-dimensional real-time iterative array, J. ACM 12(1965)388–394.

J. Mazoyer, A six-state minimal time solution to the Fring Squad Synchronization Problem, Theor. Comp. Sci. 50(1987)183–238.

J. Mazoyer, Computations on one-dimensional cellular automaton: Extended version, Preprint (1993).

J. Mazoyer and V. Terrier, Signals on one-dimensional cellular automata, Preprint.

N. Reimen and J. Mazoyer, A linear speed-up theorem for cellular automata, Theor. Comp. Sci. 101(1992)59–98.

A.R. Smith, Cellular automata theory, Technical Report 2, Stanford University (1960).

A.R. Smith, Real time language recognition by one-dimensional cellular automata, J. ACM 6(1972)233–235.

M. Minsky,Finite and Infinite Machines (Prentice-Hall, 1967) pp. 28–29.

R. Péters,Recursive Functions (Akadémiai Kiadó, Budapest, 1967).

A. Waksman, An optimal solution to the Firing Squad Synchronization Problem, Inf. and Contr. 9(1966)66–87.