Computations of transonic flow with the v2–f turbulence model

International Journal of Heat and Fluid Flow - Tập 22 - Trang 53-61 - 2001
Fue-Sang Lien1, Georgi Kalitzin2
1Department of Mechanical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ont., Canada N2L 3G1
2Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3030, USA

Tài liệu tham khảo

Batten, P.E., Loyau, H., Leschziner, M.A., 1997. In: Proceedings of the Workshop on Shock/Boundary-Layer Interaction, UMIST, UK. Craft, 1996, A Reynolds stress closure designed for complex geometries, Int. J. Heat Fluid Flow, 17, 245, 10.1016/0142-727X(96)00038-0 Cook, P.H., McDonald, M.A., Firmin, M.C.P., 1979. Aerofoil 2822-pressure distributions, boundary layer and wake measurements, AGARD AR 138 Delery, 1983, Experimental investigation of turbulence properties in transonic shock-wave/boundary-layer interactions, AIAA J., 21, 180, 10.2514/3.8052 Durbin, 1991, Near-wall turbulence closure modelling without damping function, Theor. Comput. Fluid Dynamics, 3, 1, 10.1007/BF00271513 Durbin, 1993, A Reynolds stress model for near-wall turbulence, J. Fluid. Mech., 249, 465, 10.1017/S0022112093001259 Durbin, 1995, Separated flow computations with the k–ε–v2 model, AIAA J., 33, 659, 10.2514/3.12628 Durbin, 1996, On the k–ϵ stagnation point anomaly, Int. J. Heat Fluid Flow, 17, 89, 10.1016/0142-727X(95)00073-Y Gibson, 1978, Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech., 86, 491, 10.1017/S0022112078001251 Haase, W., Bradsma, F., Elsholz, E., Leschziner, M., Schwamborn, D., 1993. EUROVAL – an European Initiative on Validation of CFD Codes Notes on Numerical Fluid Mechanics, Vieweg, p. 42 Hafez, 1979, Artificial compressibility methods for numerical solutions of transonic full potential equation, AIAA J., 17, 838, 10.2514/3.61235 Ha Minh, H., Vandromme, D.D., 1986. Modelling of compressible turbulent flows: present possibilities and perspectives. In: Proceedings of the Shear Layer/Shock Wave Interaction, IUTAM Symposium, Palaiseau, Springer, Berlin, p. 13 Kalitzin, G., 1999a. Application of v2–f turbulence model to transonic flows, AIAA-99-3780 Kalitzin, G., 1999b. Application of the v2–f model to aerospace configurations, CTR - Annual Research Briefs Kim, 1987, Turbulence statistics in fully-developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133, 10.1017/S0022112087000892 Krist, S., Biedron, R., Rumsey, C., 1998. CFL3D User's Manual, Version 5.0, NASA/TM-208444 Lien, 2000, A pressure-based unstructured grid method for all-speed flows, Int. J. Numer. Meth. Fluids, 33, 355, 10.1002/1097-0363(20000615)33:3<355::AID-FLD12>3.0.CO;2-X Lien, F.S., Durbin, P.A., 1996. Non-linear k–ε–v′2 modelling with application to high lift. In: Proceedings of the Summer Program 1996, Stanford University, p. 5 Lien, F.S., Kalitzin, G., Durbin, P.A., 1998. RANS modelling for compressible and transitional flows. In: Proceedings of the Summer Program 1998, Stanford University, p. 267 Lien, 1993, A pressure–velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure, ASME J. Fluid Eng., 115, 717, 10.1115/1.2910204 Lien, 1994, A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment closure, part 1: computational implementation, part 2: application, Comput. Meth. Appl. Mech. Eng., 114, 123, 10.1016/0045-7825(94)90165-1 Mansour, 1988, Reynolds-stress and dissipation-rate budgets in a turbulent channel flow, J. Fluid Mech., 194, 15, 10.1017/S0022112088002885 Patel, 1985, Turbulence models for near-wall and low Reynolds number flows: a review, AIAA J., 23, 1308, 10.2514/3.9086 Perneix, 1998, Computation of 3-D turbulent boundary layers using the v2–f model, Flow Turbul. Combust., 10, 19, 10.1023/A:1009986925097 Rhie, 1983, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 1525, 10.2514/3.8284