Computational study of the NO, SO2, and NH3 adsorptions on fragments of 3N-graphene and Al/3N graphene

Journal of Molecular Modeling - Tập 24 - Trang 1-10 - 2018
Yao-Dong Song1,2, Liang Wang3, Qian-Ting Wang4
1College of Mathematics and Physics, Fujian University of Technology, Fuzhou, People’s Republic of China
2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People’s Republic of China
3School of Humanities, Fujian University of Technology, Fuzhou, People’s Republic of China
4Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou, People’s Republic of China

Tóm tắt

The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are −220.5 kJ mol−1 for Al/3NG-NO, −111.9 kJ mol−1 for Al/3NG-NH3, and −347.7 kJ mol−1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.

Tài liệu tham khảo

Rycerz A, Tworzydlo J, Beenakker CWJ (2007) Nat Phys 3:172–175 Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D (2007) Phys Rev Lett 98:236803 Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162 Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem 121:4879–4881 Zhou M, Lu YH, Cai YQ, Zhang C, Feng YP (2011) Nanotechnology 22:385502 Lee H, Ihm J, Cohen ML, Louie SG (2010) Nano Lett 10:793–798 Guo S, Dong S (2011) J Mater Chem 21:18503–18516 Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Nat Mater 6:652–655 Yavari F, Koratkar N (2012) J Phys Chem Lett 3:1746–1753 Pearce R, Iakimov T, Andersson M, Hultman L, Spetz AL, Yakimova R (2011) Sensors Actuators B Chem 155:451–455 Shokuhi Rad A, Abedini E (2016) Appl Surf Sci 360:1041–1046 Giovanni M, Poh HL, Ambrosi A, Zhao G, Sofer Z, Sanek F, Khezri B, Webster RD, Pumera M (2012) Nanoscale 4:5002–5008 Subrahmanyam KS, Manna AK, Pati SK, Rao CNR (2010) Chem Phys Lett 497:70–75 Gutes A, Hsia B, Sussman A, Mickelson W, Zettl A, Carraro C, Maboudian R (2012) Nanoscale 4:438–440 Lopez-Corral I, German E, Volpe MA, Brizuela GP, Juan A (2010) Int J Hydrog Energy 35:2377–2384 Tang Y, Chen W, Li C, Pan L, Dai X, Ma D (2015) Appl Surf Sci 342:191–199 Ma L, Zhang JM, Xu KW, Ji V (2015) Appl Surf Sci 342:121–127 Shokuhi Rad A (2015) Appl Surf Sci 357:1217–1224 Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) J Mater Chem 21:5430–5434 Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Electrochem Commun 13:822–825 Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Nano Lett 9:1752–1758 Qu L, Liu Y, Baek JB, Dai L (2010) ACS Nano 4:1321–1326 Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B et al (2011) J Mater Chem 21:8038–8044 Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J et al (2011) Chem Mater 23:1188–1193 Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV et al (2009) Adv Mater 21:4726–4730 Ataca C, Akturk E, Ciraci S, Ustunel H (2008) Appl Phys Lett 93:043123-1–043123-3 Boheshti E, Nojeh A, Servati P (2011) Carbon 49:1561–1567 Park HL, Yi SC, Chung YC (2010) Int J Hydrog Energy 35:3583–3587 Giraudet S, Zhu Z (2011) Carbon 49:398–405 Yang SJ, Cho JH, Oh GH, Nahm KS, Park CR (2009) Carbon 47:1585–1591 Cai YQ, Zhang G, Zhang YW (2014) Sci Rep 4:6677 Cai YQ, Zhang G, Zhang YW (2014) J Am Chem Soc 136:6269–6275 Cai YQ, Ke QQ, Zhang G, Yakobson BI, Zhang YW (2016) J Am Chem Soc 138:10199–10206 Cai YQ, Ke QQ, Zhang G, Feng YP, Shenoy VB, Zhang YW (2015) Adv Funct Mater 25:2230–2236 Fazio G, Ferrighi L, Di Valentin C (2014) J Catal 318:203–210 Ferrighi L, Datteo M, Di Valentin C (2013) J Phys Chem C 118:223–230 Dai Y, Li Z, Yang J (2015) ChemPhysChem 16:2783–2788 Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) J Phys Chem C 114:19792–19798 Meng Y, Wu Q, Chen L, Wangmo S, Gao Y, Wang Z, Zhang RQ, Ding DJ, Niehaus TA, Frauenheim T (2013) Nanoscale 5:12178–12184 Ma F, Zhou ZJ, Liu YT, Zhang YZ, Miao TF, Li ZR (2011) Chem Phys Lett 504:211–215 Wu JH, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) J Phys Chem C 115:22232–22241 Singh SK, Neek-Amal M, Peeters FM (2014) J Chem Phys 140:074304 Wang QY, Ding YH (2016) Electrochim Acta 216:140–146 Shokuhi Rad A (2016) J Alloys Compd 682:345–351 Gholami S, Shokuhi Rad A, Heydarinasab A, Ardjmand M (2006) J Alloys Compd 686:662–668 Kulshrestha P, Sukumar N, Murray JS, Giese RF, Wood TD (2009) J Phys Chem A 113:756–766 Politzer P, Murray JS (2012) Theor Chem Accounts 131:1114 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09. Gaussian Inc., Wallingford Lu T, Chen FW (2012) J Comput Chem 33:580–592 Yu YX (2013) Phys Chem Chem Phys 15:16819 Shokuhi Rad A, Foukolaei VP (2015) Synth Met 210:171–178 Politzer P, Murray JS (2013) ChemPhysChem 14:278–294 Politzer P, Murray JS (2013) Cryst Eng Comm 15:3145–3150 Peralta-lnga Z, Lane P, Murray JS, Boyd S, Grice ME, OConnor CJ, Politzer P (2003) Nano Lett 3:21 Politzer P, Murray JS (2017) J Comput Chem. https://doi.org/10.1002/jcc.24891