Computational study of the NO, SO2, and NH3 adsorptions on fragments of 3N-graphene and Al/3N graphene
Tóm tắt
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are −220.5 kJ mol−1 for Al/3NG-NO, −111.9 kJ mol−1 for Al/3NG-NH3, and −347.7 kJ mol−1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.
Tài liệu tham khảo
Rycerz A, Tworzydlo J, Beenakker CWJ (2007) Nat Phys 3:172–175
Huard B, Sulpizio JA, Stander N, Todd K, Yang B, Goldhaber-Gordon D (2007) Phys Rev Lett 98:236803
Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162
Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) Angew Chem 121:4879–4881
Zhou M, Lu YH, Cai YQ, Zhang C, Feng YP (2011) Nanotechnology 22:385502
Lee H, Ihm J, Cohen ML, Louie SG (2010) Nano Lett 10:793–798
Guo S, Dong S (2011) J Mater Chem 21:18503–18516
Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Nat Mater 6:652–655
Yavari F, Koratkar N (2012) J Phys Chem Lett 3:1746–1753
Pearce R, Iakimov T, Andersson M, Hultman L, Spetz AL, Yakimova R (2011) Sensors Actuators B Chem 155:451–455
Shokuhi Rad A, Abedini E (2016) Appl Surf Sci 360:1041–1046
Giovanni M, Poh HL, Ambrosi A, Zhao G, Sofer Z, Sanek F, Khezri B, Webster RD, Pumera M (2012) Nanoscale 4:5002–5008
Subrahmanyam KS, Manna AK, Pati SK, Rao CNR (2010) Chem Phys Lett 497:70–75
Gutes A, Hsia B, Sussman A, Mickelson W, Zettl A, Carraro C, Maboudian R (2012) Nanoscale 4:438–440
Lopez-Corral I, German E, Volpe MA, Brizuela GP, Juan A (2010) Int J Hydrog Energy 35:2377–2384
Tang Y, Chen W, Li C, Pan L, Dai X, Ma D (2015) Appl Surf Sci 342:191–199
Ma L, Zhang JM, Xu KW, Ji V (2015) Appl Surf Sci 342:121–127
Shokuhi Rad A (2015) Appl Surf Sci 357:1217–1224
Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) J Mater Chem 21:5430–5434
Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Electrochem Commun 13:822–825
Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Nano Lett 9:1752–1758
Qu L, Liu Y, Baek JB, Dai L (2010) ACS Nano 4:1321–1326
Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B et al (2011) J Mater Chem 21:8038–8044
Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J et al (2011) Chem Mater 23:1188–1193
Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV et al (2009) Adv Mater 21:4726–4730
Ataca C, Akturk E, Ciraci S, Ustunel H (2008) Appl Phys Lett 93:043123-1–043123-3
Boheshti E, Nojeh A, Servati P (2011) Carbon 49:1561–1567
Park HL, Yi SC, Chung YC (2010) Int J Hydrog Energy 35:3583–3587
Giraudet S, Zhu Z (2011) Carbon 49:398–405
Yang SJ, Cho JH, Oh GH, Nahm KS, Park CR (2009) Carbon 47:1585–1591
Cai YQ, Zhang G, Zhang YW (2014) Sci Rep 4:6677
Cai YQ, Zhang G, Zhang YW (2014) J Am Chem Soc 136:6269–6275
Cai YQ, Ke QQ, Zhang G, Yakobson BI, Zhang YW (2016) J Am Chem Soc 138:10199–10206
Cai YQ, Ke QQ, Zhang G, Feng YP, Shenoy VB, Zhang YW (2015) Adv Funct Mater 25:2230–2236
Fazio G, Ferrighi L, Di Valentin C (2014) J Catal 318:203–210
Ferrighi L, Datteo M, Di Valentin C (2013) J Phys Chem C 118:223–230
Dai Y, Li Z, Yang J (2015) ChemPhysChem 16:2783–2788
Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) J Phys Chem C 114:19792–19798
Meng Y, Wu Q, Chen L, Wangmo S, Gao Y, Wang Z, Zhang RQ, Ding DJ, Niehaus TA, Frauenheim T (2013) Nanoscale 5:12178–12184
Ma F, Zhou ZJ, Liu YT, Zhang YZ, Miao TF, Li ZR (2011) Chem Phys Lett 504:211–215
Wu JH, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) J Phys Chem C 115:22232–22241
Singh SK, Neek-Amal M, Peeters FM (2014) J Chem Phys 140:074304
Wang QY, Ding YH (2016) Electrochim Acta 216:140–146
Shokuhi Rad A (2016) J Alloys Compd 682:345–351
Gholami S, Shokuhi Rad A, Heydarinasab A, Ardjmand M (2006) J Alloys Compd 686:662–668
Kulshrestha P, Sukumar N, Murray JS, Giese RF, Wood TD (2009) J Phys Chem A 113:756–766
Politzer P, Murray JS (2012) Theor Chem Accounts 131:1114
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09. Gaussian Inc., Wallingford
Lu T, Chen FW (2012) J Comput Chem 33:580–592
Yu YX (2013) Phys Chem Chem Phys 15:16819
Shokuhi Rad A, Foukolaei VP (2015) Synth Met 210:171–178
Politzer P, Murray JS (2013) ChemPhysChem 14:278–294
Politzer P, Murray JS (2013) Cryst Eng Comm 15:3145–3150
Peralta-lnga Z, Lane P, Murray JS, Boyd S, Grice ME, OConnor CJ, Politzer P (2003) Nano Lett 3:21
Politzer P, Murray JS (2017) J Comput Chem. https://doi.org/10.1002/jcc.24891