Computational social scientist beware: Simpson’s paradox in behavioral data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alipourfard, N., Fennell, P., & Lerman, K. (2018). Can you trust the trend? Discovering Simpson’s paradoxes in social data. In Proceedings of the 11th International ACM Conference on Web Search and Data Mining. ACM
Barbosa, S., Cosley, D., Sharma, A., & Cesar, R.M., Jr. (2016) Averaging gone wrong: Using time-aware analyses to better understand behavior. In Proceedings of the World Wide Web Conference (pp. 829–841), April 2016.
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from berkeley. Science, 187(4175), 398–404.
Blyth, C. R. (1972). On simpson’s paradox and the sure-thing principle. Journal of the American Statistical Association, 67(338), 364–366.
Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E., et al. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295–298.
Fabris, C., & Freitas, A. (2000). Discovering surprising patterns by detecting occurrences of simpson’s paradox. In M. Bramer, A. Macintosh, & F. Coenen (Eds.), Research and Development in Intelligent Systems XVI (pp. 148–160). London: Springer
Ferrara, E., Alipourfard, N., Burghardt, K., Gopal, C., & Lerman, K. (2017). Dynamics of content quality in collaborative knowledge production. In Proceedings of 11th AAAI International Conference on Web and Social Media. AAAI
Golder, S. A., & Macy, M. W. (2011). Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051), 1878–1881.
Hodas, N.O.. & Lerman, K. (2012). How limited visibility and divided attention constrain social contagion. In ASE/IEEE International Conference on Social Computing
Hodas, N.O., & Lerman, K. (2014). The simple rules of social contagion. Scientific Reports, 4, 4343.
Kleinberg, J., Himabindu, L., Jure, L. Jens, L., & Sendhil, M. (2017). Human decisions and machine predictions. National Bureau of Economic Research: Technical report.
Kooti, F., Lerman, K., Aiello, L.M., Grbovic, M., Djuric, N., & Radosavljevic, V. (2016). Portrait of an online shopper: Understanding and predicting consumer behavior. In The 9th ACM International Conference on Web Search and Data Mining
Kooti, F., Subbian, K., Mason, W., Adamic, L., & Lerman, K. (2017). Understanding short-term changes in online activity sessions. In Proceedings of the 26th International World Wide Web Conference (Companion WWW2017)
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., et al. (2009). Computational social science. Science, 323, 721–723.
Lerman, K. (2016). Information is not a virus, and other consequences of human cognitive limits. Future Internet, 8(2), 21+.
McFarland, D. A., Lewis, K., & Goldberg, A. (2016). Sociology in the era of big data: The ascent of forensic social science. The American Sociologist, 47(1), 12–35.
Norton, J.H., & Divine, G. (2015). Simpson’s paradox... and how to avoid it. Significance, 12(4), 40–43.
Rodriguez, M.G., Gummadi, K., Schoelkopf, B. (2014). Quantifying information overload in social media and its impact on social contagions. In Proceedings of Eighth International AAAI Conference on Weblogs and Social Media
Romero, D.M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th International Conference on World Wide Web (pp. 695–704), New York, NY, USA: ACM.
Singer, P., Ferrara, E., Kooti, F., Strohmaier, M., & Lerman, K. (2016). Evidence of online performance deterioration in user sessions on reddit. PLoS ONE, 11(8), e0161636+.
Ver Steeg, G., Ghosh, R., & Lerman, K. (2011). What stops social epidemics? In Proceedings of 5th International Conference on Weblogs and Social Media. AAAI
Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. The American Statistician, 39(3), 176–185.