Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects

Melody Dong1, Ingrid S. Lan1, Weiguang Yang2, Marlene Rabinovitch2, Jeffrey A. Feinstein3, Alison L. Marsden3
1Department of Bioengineering, Stanford University, Stanford, CA, USA
2Department of Pediatrics, Stanford University, Stanford, CA USA
3Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acosta S, Puelz C, Rivière B, Penny DJ, Brady KM, Rusin CG (2017) Cardiovascular mechanics in the early stages of pulmonary hypertension: a computational study. Biomech Model Mechanobiol 16(6):2093–2112. https://doi.org/10.1007/s10237-017-0940-4

Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a006429

Al-Nassri S, Unny T (1981) Developing laminar flow in the inlet length of a smooth pipe. Appl Sci Res 36:313–332. https://doi.org/10.1007/BF00411891

Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46(11):1097–1112. https://doi.org/10.1007/s11517-008-0420-1

Barker AJ, Roldán-Alzate A, Entezari P, Shah SJ, Chesler NC, Wieben O, Markl M, François CJ (2015) Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 73(5):1904–1913. https://doi.org/10.1002/mrm.25326

Beekman RH, Rocchini AP, Rosenthal A (1982) Hemodynamic effects of hydralazine in infants with a large ventricular septal defect. Circulation 65(3):523–528. https://doi.org/10.1161/01.CIR.65.3.523

Cattermole GN, Leung PYM, Ho GYL, Lau PWS, Chan CPY, Chan SSW, Smith BE, Graham CA, Rainer TH (2017) The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiol Rep 5(6):10.14814/phy2.13195

Cheng CP, Herfkens RJ, Taylor CA, Feinstein JA (2005) Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using mri: the effects of exercise and age. J Magn Reson Imag 21(6):752–758. https://doi.org/10.1002/jmri.20333

Cheng CP, Taur AS, Lee GS, Goris ML, Feinstein JA (2006) Relative lung perfusion distribution in normal lung scans: observations and clinical implications. Congenit Heart Dis 1(5):210–216. https://doi.org/10.1111/j.1747-0803.2006.00037.x

Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387. https://doi.org/10.1152/physrev.00047.2009

Cleuren AC, van der Ent MA, Jiang H, Hunker KL, Yee A, Siemieniak DR, Molema G, Aird WC, Ganesh SK, Ginsburg D (2019) The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. PNAS 116(47):23618–23624. https://doi.org/10.1073/pnas.1912409116

Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26. https://doi.org/10.1038/ncpcardio1397

Dereddy N, Huang J, Erb M, Guzel S, Wolk JH, Sett SS, Gewitz MH, Mathew R (2012) Associated inflammation or increased flow-mediated shear stress, but not pressure alone, disrupts endothelial caveolin-1 in infants with pulmonary hypertension. Pulm Circ 2(4):492–500. https://doi.org/10.4103/2045-8932.105038

Dickinson MG, Bartelds B, Borgdorff MAJ, Berger RMF (2013) The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models. Am J Physiol Lung Cell Mol Physiol 305(1):L1–L14. https://doi.org/10.1152/ajplung.00031.2013

Dickinson MG, Bartelds B, Molema G, Borgdorff MA, Boersma B, Takens J, Weij M, Wichers P, Sietsma H, Berger RM (2011) Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol 179(5):2199–2209. https://doi.org/10.1016/j.ajpath.2011.07.030

Dolan JM, Sim FJ, Meng H, Kolega J (2012) Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 302(8):C1109–C1118. https://doi.org/10.1152/ajpcell.00369.2011

Dong M, Yang W, Tamaresis JS, Chan FP, Zucker EJ, Kumar S, Rabinovitch M, Marsden AL, Feinstein JA (2020) Image-based scaling laws for somatic growth and pulmonary artery morphometry from infancy to adulthood. Am J Physiol Heart Circ Physiol 319(2):H432–H442. https://doi.org/10.1152/ajpheart.00123.2020

Egito ES, Aiello VD, Bosisio IB, Lichtenfels AJ, Horta AL, Saldiva PH, Capelozzi VL (2003) Vascular remodeling process in reversibility of pulmonary arterial hypertension secondary to congenital heart disease. Pathol Res Pract 199(8):521–532. https://doi.org/10.1078/0344-0338-00457

Esmaily Moghadam M, Bazilevs Y, Hsia TY, Vignon-Clementel IE, Marsden AL (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48(3):277–291. https://doi.org/10.1007/s00466-011-0599-0

Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJ, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706. https://doi.org/10.1016/j.cma.2005.11.011

Fineman JR, Black SM (2019) Pressure vs flow-induced pulmonary hypertension. Adv Pulm Hypertens 18(1), 19–24:10.21693/1933-088x–18.1.19

Forouzan O, Warczytowa J, Wieben O, François CJ, Chesler NC (2015) Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-015-0213-2

Garcia-Polite F, Martorell J, Del Rey-Puech P, Melgar-Lesmes P, O’Brien CC, Roquer J, Ois A, Principe A, Edelman ER, Balcells M (2017) Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab 37(7):2614–2625. https://doi.org/10.1177/0271678X16672482

Ghorishi Z, Milstein JM, Poulain FR, Moon-Grady A, Tacy T, Bennett SH, Fineman JR, Eldridge MW (2007) Shear stress paradigm for perinatal fractal arterial network remodeling in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 292(6):H3006–H3018. https://doi.org/10.1152/ajpheart.01012.2006

Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115(4):588–594. https://doi.org/10.1115/1.2895545

Haworth SG, Hislop AA (1983) Pulmonary vascular development: normal values of peripheral vascular structure. Am J Cardiol 52(5):578–583. https://doi.org/10.1016/0002-9149(83)90030-9

Hedvall G (1978) The applicability of the thermodilution method for determination of pulmonary blood flow and pulmonary vascular resistance in infants and children with ventricular septal defects. Scan J Clin Lab Invest 38(6):581–585. https://doi.org/10.1080/00365517809108823

Hislop A, Reid L (1972) Intra-pulmonary arterial development during fetal life-branching pattern and structure. J Anat 113(Pt 1):35–48

Hislop A, Reid L (1973) Pulmonary arterial development during childhood: branching pattern and structure. Thorax 28(2):129–35. https://doi.org/10.1136/THX.28.2.129

Hoffman JI, Rudolph AM (1965) The natural history of ventricular septal defects in infancy. Am J Cardiol 16(5):634–653. https://doi.org/10.1016/0002-9149(65)90047-0

Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81(5):2123–2133. https://doi.org/10.1152/jappl.1996.81.5.2123

Hunter KS, Albietz JA, Lee P-F, Lanning CJ, Lammers SR, Hofmeister SH, Kao PH, Qi HJ, Stenmark KR, Shandas R (2010) In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J Appl Physiol 108(4):968–975. https://doi.org/10.1152/japplphysiol.01173.2009

Hunter KS, Lanning CJ, Chen S-YJ, Zhang Y, Garg R, Ivy DD, Shandas R (2006) Simulations of congenital septal defect closure and reactivity testing in patient-specific models of the pediatric pulmonary vasculature: A 3d numerical study with fluid-structure interaction. J Biomech Eng 128(4):564–572. https://doi.org/10.1152/japplphysiol.01173.2009

Jia Y, Argueta-Morales IR, Liu M, Bai Y, Divo E, Kassab AJ, Decampli WM (2015) Experimental study of anisotropic stress/strain relationships of the piglet great vessels and relevance to pediatric congenital heart disease. Ann Thorac Surg 99(4):1399–1407. https://doi.org/10.1016/j.athoracsur.2014.11.032

Kameny RJ, Datar SA, Boehme JB, Morris C, Zhu T, Goudy BD, Johnson EG, Galambos C, Raff GW, Sun X, Wang T, Chiacchia SR, Lu Q, Black SM, Maltepe E, Fineman JR (2019) Ovine models of congenital heart disease and the consequences of hemodynamic alterations for pulmonary artery remodeling. Am J Respir Cell Mol Biol 60(5):503–514. https://doi.org/10.1165/rcmb.2018-0305MA

Kheyfets VO, Rios L, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Zikos A, Spotti J, Reilly JJ, Finol EA (2015) Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Methods Programs Biomed 120:88–101. https://doi.org/10.1016/j.cmpb.2015.04.005

Kheyfets VO, Schafer M, Podgorski CA, Schroeder JD, Browning J, Hertzberg J, Buckner JK, Hunter KS, Shandas R, Fenster BE (2016) 4d magnetic resonance flow imaging for estimating pulmonary vascular resistance in pulmonary hypertension. J Magn Reson 44(4):914–922. https://doi.org/10.1002/jmri.25251

Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC (2005) Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 288(3):H1209–H1217. https://doi.org/10.1152/ajpheart.01129.2003

Koh W, Morell E, Viegas M, Moguillansky D, Kazmerski TM, Munoz RA (2020) Ventricular septal defects. In: Munoz RA, Morell VO, da Cruz EM, Vetterly CG, da Silva JP (eds) Critical Care of Children with Heart Disease. Springer, Cham, pp 165–171. https://doi.org/10.1007/978-3-030-21870-6_15

Kosecik M, Sagin-Saylam G, Unal N, Kir M, Paytoncu S (2007) Noninvasive assessment of left-to-right shunting in ventricular septal defects by the proximal isovelocity surface area method on doppler colour flow mapping. Can J Cardiol 23(13):1049–1053. https://doi.org/10.1016/S0828-282X(07)70872-3

Krüger-Genge A, Blocki A, Franke RP, Jung F (2019) Vascular endothelial cell biology an update. Int J Mol Sci. https://doi.org/10.3390/ijms20184411

Kulik TJ (2012) Pulmonary blood flow and pulmonary hypertension: is the pulmonary circulation flowophobic or flowophilic? Pulm Circ 2(3):327–339. https://doi.org/10.4103/2045-8932.101644

Lange TJ, Dornia C, Stiefel J, Stroszczynski C, Arzt M, Pfeifer M, Hamer OW (2013) Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension. Pulm Circ 3(2):363–368. https://doi.org/10.4103/2045-8932.113175

Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107(4):341–347. https://doi.org/10.1115/1.3138567

Levitsky MG (2018) Blood flow to the lung. In Levitsky, M. G., editor, Pulmonary Physiology, chapter 4. McGraw-Hill, 9e edition

Levy B, Ambrosio G, Pries A, Struijker-Boudier H (2001) Microcirculation in hypertension: a new target for treatment? Circulation 104(6):735–740. https://doi.org/10.1161/HC3101.091158

Li M, Stenmark KR, Shandas R, Tan W (2009) Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J Vasc Res 46(6):561–71. https://doi.org/10.1159/000226224

Lipowsky HH (1995) Shear stress in the circulation. In: Bevan JA, Kaley G, Rubanyi GM (eds) Flow-Dependent Regulation of Vascular Function. Springer, New York, pp 28–45. https://doi.org/10.1007/978-1-4614-7527-9_2

Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL (2012) Fluid-structure interaction simulations of the fontan procedure using variable wall properties. Int J Numer Meth Biomed Eng 28(5):513–527. https://doi.org/10.1002/cnm.1485

Maher G, Parker D, Wilson N, Marsden A (2020) Neural network vessel lumen regression for automated lumen cross-section segmentation in cardiovascular image-based modeling. Cardiovasc Eng Technol 11:621–635. https://doi.org/10.1007/s13239-020-00497-5

Mahmoud MM, Serbanovic-Canic J, Feng S, Souilhol C, Xing R, Hsiao S, Mammoto A, Chen J, Ariaans M, Francis SE, Van Der Heiden K, Ridger V, Evans PC (2017) Shear stress induces endothelial-to-mesenchymal transition via the transcription factor snail. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-03532-z

Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042. https://doi.org/10.1001/jama.282.21.2035

Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11:1–18. https://doi.org/10.1007/s10237-011-0289-z

Muralidaran A, Shen I (2018) Ventricular septal defects. In: Ungerleider RM, Meliones JN, McMillan KN, Cooper DS, Jacobs JP (eds) Critical Heart Disease in Infants and Children, chapter 49, pp 597–605.e2. Elsevier, 3e edition. https://doi.org/10.1016/B978-1-4557-0760-7.00049-8

Odagiri K, Inui N, Hakamata A, Inoue Y, Suda T, Takehara Y, Sakahara H, Sugiyama M, Alley MT, Wakayama T, Watanabe H (2016) Non-invasive evaluation of pulmonary arterial blood flow and wall shear stress in pulmonary arterial hypertension with 3d phase contrast magnetic resonance imaging. SpringerPlus 5(1):1071. https://doi.org/10.1186/s40064-016-2755-7

Olufsen MS (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol Heart Circ Physiol 276:H257–H268. https://doi.org/10.1152/ajpheart.1999.276.1.h257

Ostrowski MA, Huang NF, Walker TW, Verwijlen T, Poplawski C, Khoo AS, Cooke JP, Fuller GG, Dunn AR (2014) Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys J 106(2):366–374. https://doi.org/10.1016/j.bpj.2013.11.4502

Postles A, Clark AR, Tawhai MH (2014) Dynamic blood flow and wall shear stress in pulmonary hypertensive disease. Annu Int Conf IEEE Eng Med Biol Soc. Chicago. IEEE, pp 5671–5674. https://doi.org/10.1109/EMBC.2014.6944914

Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77(5):1017–1023. https://doi.org/10.1161/01.RES.77.5.1017

Qureshi MU, Colebank MJ, Paun LM, Ellwein Fix L, Chesler N, Haider MA, Hill NA, Husmeier D, Olufsen MS (2019) Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism. Biomech Model Mechanobiol 18(1):219–243. https://doi.org/10.1007/s10237-018-1078-8

Qureshi MU, Vaughan GD, Sainsbury C, Johnson M, Peskin CS, Olufsen MS, Hill NA (2014) Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech Model Mechanobiol 13(5):1137–1154. https://doi.org/10.1007/s10237-014-0563-y

Rabinovitch M, Haworth SG, Castaneda AR, Nadas AS, Reid LM (1978) Lung biopsy in congenital heart disease: a morphometric approach to pulmonary vascular disease. Circulation 58(6):1107–1122. https://doi.org/10.1161/01.CIR.58.6.1107

Rabinovitch M, Herrera-deLeon V, Castaneda AR, Reid L (1981) Growth and development of the pulmonary vascular bed in patients with tetralogy of fallot with or without pulmonary atresia. Circulation 64(6):1234–1249. https://doi.org/10.1161/01.CIR.64.6.1234

Rafikova O, Al Ghouleh I, Rafikov R (2019) Focus on early events: pathogenesis of pulmonary arterial hypertension development. Antioxid Redox Signal 31(13):933–953. https://doi.org/10.1089/ars.2018.7673

Raj JU, Chen P (1986) Micropuncture measurement of microvascular pressures in isolated lamb lungs during hypoxia. Circ Res 59(4):398–404. https://doi.org/10.1161/01.RES.59.4.398

Ramachandra AB, Humphrey JD (2019) Biomechanical characterization of murine pulmonary arteries. J Biomech 84:18–26. https://doi.org/10.1016/j.jbiomech.2018.12.012

Reneman RS, Hoeks AP (2008) Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput 46(5):499–507. https://doi.org/10.1007/s11517-008-0330-2

Sakao S, Tatsumi K, Voelkel NF (2010) Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 43(6):629–634. https://doi.org/10.1165/rcmb.2009-0389TR

Schäfer M, Ivy DD, Abman SH, Stenmark K, Browne LP, Barker AJ, Mitchell MB, Morgan GJ, Wilson N, Shah A, Kollengode M, Naresh N, Fonseca B, DiMaria M, Buckner JK, Hunter KS, Kheyfets V, Fenster BE, Truong U (2019) Differences in pulmonary arterial flow hemodynamics between children and adults with pulmonary arterial hypertension as assessed by 4d-flow cmr studies. Am J Physiol Heart Circ Physiol 316(5):H1091–H1104. https://doi.org/10.1152/ajpheart.00802.2018

Schäfer M, Ivy DD, Barker AJ, Kheyfets V, Shandas R, Abman SH, Hunter KS, Truong U (2017) Characterization of cmr-derived haemodynamic data in children with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imag 18(4):424–431. https://doi.org/10.1093/ehjci/jew152

Schäfer M, Kheyfets VO, Schroeder JD, Dunning J, Shandas R, Buckner JK, Browning J, Hertzberg J, Hunter KS, Fenster BE (2016) Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension. Pulm Circ 6(1):37–45. https://doi.org/10.1086/685024

Schmid-Schönbein H (1981) Interaction of vasomotion and blood rheology in haemodynamics. In: Lowe G, Barbenel J, Forbes C (eds) Clinical Aspects of Blood Viscosity and Cell Deformability, chapter 6. Springer, London, pp 49–66. https://doi.org/10.1007/978-1-4471-3105-2_6

Secomb TW (2016) Hemodynamics. Compr Physiol 6(2):975–1003. https://doi.org/10.1002/cphy.c150038

Secomb TW (2017) Blood flow in the microcirculation. Annu Rev Fluid Mech 49:443–61. https://doi.org/10.1146/annurev-fluid-010816-060302

Sharma S, Aramburo A, Rafikov R, Sun X, Kumar S, Oishi PE, Datar SA, Raff G, Xoinis K, Kalkan G, Fratz S, Fineman JR, Black SM (2013) L-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr Res 74(1):39–47. https://doi.org/10.1038/pr.2013.71

Sho E, Sho M, Singh TM, Nanjo H, Komatsu M, Xu C, Masuda H, Zarins CK (2002) Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol 73(2):142–153. https://doi.org/10.1006/exmp.2002.2457

Silverman NH, Snider AR, Rudolph AM (1980) Evaluation of pulmonary hypertension by m-mode echocardiography in children with ventricular septal defect. Circulation 61(6):1125–1132

Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53(1):1801913. https://doi.org/10.1183/13993003.01913-2018

Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JX-J (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307(4):C373–C383. https://doi.org/10.1152/ajpcell.00115.2014

Spilker RL, Feinstein JA, Parker DW, Reddy VM, Taylor CA (2007) Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann Biomed Eng 35(4):546–559. https://doi.org/10.1007/s10439-006-9240-3

Szulcek R, Happe CM, Rol N, Fontijn RD, Dickhoff C, Hartemink KJ, Grünberg K, Tu L, Timens W, Nossent GD, Paul MA, Leyen TA, Horrevoets AJ, De Man FS, Guignabert C, Yu PB, Vonk-Noordegraaf A, Amerongen GPN, Bogaard HJ (2016) Delayed microvascular shear adaptation in pulmonary arterial hypertension: role of platelet endothelial cell adhesion molecule-1 cleavage. Am J Respir Crit Care Med 193(12):1410–1420. https://doi.org/10.1164/rccm.201506-1231OC

Tanaka Y, Schuster DP, Davis EC, Patterson GA, Botney MD (1996) The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 98(2):434–442. https://doi.org/10.1172/JCI118809

Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA (2012) Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm Circ 2(4):470–6. https://doi.org/10.4103/2045-8932.105035

Taylor CA, Hughes TJ, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158(1–2):155–196. https://doi.org/10.1016/S0045-7825(98)80008-X

Terada M, Takehara Y, Isoda H, Matsunaga T, Alley M (2016) Low wss and high osi measured by 3d cine pc mri reflect high pulmonary artery pressures in suspected secondary pulmonary arterial hypertension. Magn Reson Med Sci 15(2):193–202. https://doi.org/10.2463/mrms.mp.2015-0038

Thorin E, Shatos MA, Shreeve SM, Walters CL, Bevan JA (1997) Human vascular endothelium heterogeneity. Stroke 28(2):375–381. https://doi.org/10.1161/01.STR.28.2.375

Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2017) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138. https://doi.org/10.1016/J.COMPFLUID.2016.05.015

Truong U, Fonseca B, Dunning J, Burgett S, Lanning C, Ivy DD, Shandas R, Hunter K, Barker AJ (2013) Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension. J Cardiovasc Magn Reson 15(1):81. https://doi.org/10.1186/1532-429X-15-81

Uebing A, Kaemmerer H (2011) Ventricular septal defect. In: Gatzoulis MA, Webb GD, Daubeney PE (eds) Diagnosis and management of adult congenital heart disease. Churchill Livingstone, London, pp 188–195

Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2017) Simvascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541. https://doi.org/10.1007/s10439-016-1762-8

Van Der Feen DE, Bartelds B, De Boer RA, Berger RM (2017) Pulmonary arterial hypertension in congenital heart disease: translational opportunities to study the reversibility of pulmonary vascular disease. Eur Heart J 38(26):2034–2040. https://doi.org/10.1093/eurheartj/ehx034

Van Der Feen DE, Bossers GP, Hagdorn QA, Moonen JR, Kurakula K, Szulcek R, Chappell J, Vallania F, Donato M, Kok K, Kohli JS, Petersen AH, Van Leusden T, Demaria M, Goumans MJT, De Boer RA, Khatri P, Rabinovitch M, Berger RM, Bartelds B (2020) Cellular senescence impairs the reversibility of pulmonary arterial hypertension. Sci Transl Med. https://doi.org/10.1126/SCITRANSLMED.AAW4974

Vignon-Clementel I, Figueroa C, Jansen K, Taylor C (2010) Outflow boundary conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13(5):625–640. https://doi.org/10.1080/10255840903413565

Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796. https://doi.org/10.1016/j.cma.2005.04.014

Wang L, Liu J, Zhong Y, Zhang M, Xiong J, Shen J, Tong Z, Xu Z (2020) Medical image-based hemodynamic analyses in a study of the pulmonary artery in children with pulmonary hypertension related to congenital heart disease. Front Pediatr. https://doi.org/10.3389/fped.2020.521936

Wang Y, Sun HY, Kumar S, Puerta M (2019) Zbtb46 is a shear-sensitive transcription factor inhibiting endothelial cell proliferation via gene expression regulation of cell cycle proteins. Lab Invest 99(3):305–318. https://doi.org/10.1038/s41374-018-0060-5

Wang Z, Lakes RS, Golob M, Eickhoff JC, Chesler NC (2013) Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS ONE 8(11):e78569. https://doi.org/10.1371/journal.pone.0078569

White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJ, Newby AC (2011) Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 226(11):2841–2848. https://doi.org/10.1002/jcp.22629

Yang W, Dong M, Rabinovitch M, Chan FP, Marsden AL, Feinstein JA (2019) Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients. Biomech Model Mechanobiol 18:779–796. https://doi.org/10.1007/s10237-018-01114-0

Zambrano BA, McLean NA, Zhao X, Tan JL, Zhong L, Figueroa CA, Lee LC, Baek S (2018) Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J Biomech 68:84–92. https://doi.org/10.1016/j.jbiomech.2017.12.022

Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514. https://doi.org/10.1161/01.RES.53.4.502

Zhang M, Feng Z, Huang R, Sun C, Xu Z (2018) Characteristics of pulmonary vascular remodeling in a novel model of shunt-associated pulmonary arterial hypertension. Med Sci Monit 24:1624–1632. https://doi.org/10.12659/MSM.905654