Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations

Springer Science and Business Media LLC - Tập 41 Số 3 - Trang 924-936 - 2009
Andrew F. Hayes1, Jörg Matthes2
1School of Communication, Ohio State University, 154 N. Oval Mall, 3016 Derby Hall, 43210, Columbus, OH
2University of Zurich, Zurich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373–400.

Bissonnette, V., Ickes, W., Bernstein, I., & Knowles, E. (1990). Personality moderating variables: A warning about statistical artifact and a comparison of analytic techniques. Journal of Personality, 58, 567–587.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

Cronbach, L. J. (1987). Statistical tests for moderator variables: Flaws in analyses recently proposed. Psychological Bulletin, 102, 414–417.

Darlington, R. B. (1990). Regression and linear models. New York: McGraw-Hill.

Hayes, A. F. (2005). Statistical methods for communication science. Mahwah, NJ: Erlbaum.

Irwin, J. R., & McClelland, G. H. (2001). Misleading heuristics and moderated multiple regression models. Journal of Marketing Research, 38, 100–109.

Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (2nd ed.). Thousand Oaks, CA: Sage.

Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15, 349–367.

Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 57–93.

Karpman, M. B. (1983). The Johnson-Neyman technique using SPSS or BMDP. Educational & Psychological Measurement, 43, 137–147.

Karpman, M. B. (1986). Comparing two non-parallel regression lines with the parametric alternative to analysis of covariance using SPSS-X or SAS—the Johnson-Neyman technique. Educational & Psychologicals Measurement, 46, 639–644.

Kromrey, J. D., & Foster-Johnson, L. (1998). Mean centering in moderated multiple regression: Much ado about nothing. Educational & Psychological Measurement, 58, 42–67.

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40.

Newsom, J. T., Prigerson, H. G., Schulz, R., & Reynolds, C. F., III (2003). Investigating moderator hypotheses in aging research: Statistical, methodological, and conceptual difficulties with comparing separate regressions. International Journal of Aging & Human Development, 57, 119–150.

O’Connor, B. P. (1998). SIMPLE: All-in-one programs for exploring interactions in moderated multiple regression. Educational & Psychological Measurement, 58, 836–840.

Potthoff, R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29, 241–256.

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational & Behavioral Statistics, 31, 437–448.

Reineke, J. B., & Hayes, A. F. (2007, November). Reporting on campaign finance success: Effects on perceptions of political candidates. Paper presented at the annual meeting of the National Communication Association, Chicago.

Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88, 307–321.

Stone-Romero, E. F., & Anderson, L. E. (1994). Relative power of moderated multiple regression and the comparison of subgroup correlation coefficients for detecting moderator effects. Journal of Applied Psychology, 79, 354–359.