Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373–400.
Bissonnette, V., Ickes, W., Bernstein, I., & Knowles, E. (1990). Personality moderating variables: A warning about statistical artifact and a comparison of analytic techniques. Journal of Personality, 58, 567–587.
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.
Cronbach, L. J. (1987). Statistical tests for moderator variables: Flaws in analyses recently proposed. Psychological Bulletin, 102, 414–417.
Darlington, R. B. (1990). Regression and linear models. New York: McGraw-Hill.
Hayes, A. F. (2005). Statistical methods for communication science. Mahwah, NJ: Erlbaum.
Irwin, J. R., & McClelland, G. H. (2001). Misleading heuristics and moderated multiple regression models. Journal of Marketing Research, 38, 100–109.
Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (2nd ed.). Thousand Oaks, CA: Sage.
Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15, 349–367.
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 57–93.
Karpman, M. B. (1983). The Johnson-Neyman technique using SPSS or BMDP. Educational & Psychological Measurement, 43, 137–147.
Karpman, M. B. (1986). Comparing two non-parallel regression lines with the parametric alternative to analysis of covariance using SPSS-X or SAS—the Johnson-Neyman technique. Educational & Psychologicals Measurement, 46, 639–644.
Kromrey, J. D., & Foster-Johnson, L. (1998). Mean centering in moderated multiple regression: Much ado about nothing. Educational & Psychological Measurement, 58, 42–67.
MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40.
Newsom, J. T., Prigerson, H. G., Schulz, R., & Reynolds, C. F., III (2003). Investigating moderator hypotheses in aging research: Statistical, methodological, and conceptual difficulties with comparing separate regressions. International Journal of Aging & Human Development, 57, 119–150.
O’Connor, B. P. (1998). SIMPLE: All-in-one programs for exploring interactions in moderated multiple regression. Educational & Psychological Measurement, 58, 836–840.
Potthoff, R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29, 241–256.
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational & Behavioral Statistics, 31, 437–448.
Reineke, J. B., & Hayes, A. F. (2007, November). Reporting on campaign finance success: Effects on perceptions of political candidates. Paper presented at the annual meeting of the National Communication Association, Chicago.