Computational prediction and analysis of histone H3k27me1-associated miRNAs

Guohua Huang1, Guiyang Zhang1, Zuguo Yu2
1Provincial Key Laboratory of Informational Service for Rural Area of Southwestern Hunan, Shaoyang University, Shaoyang 422000, China
2Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China

Tài liệu tham khảo

Bannister, 2005, Reversing histone methylation, Nature, 436, 1103, 10.1038/nature04048 Jacob, 2009, H3K27me1 is E(z) in animals, but not in plants, Epigenetics, 4, 366, 10.4161/epi.4.6.9713 Chammas, 2020, Engaging chromatin: PRC2 structure meets function, Br. J. Cancer, 122, 315, 10.1038/s41416-019-0615-2 Rogenhofer, 2012, Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma, BJU Int., 109, 459, 10.1111/j.1464-410X.2011.10278.x Ellinger, 2012, Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer, Cancer Investig., 30, 92, 10.3109/07357907.2011.636117 Steiner, 2011, Patterns of histone H3 lysine 27 monomethylation and erythroid cell type-specific gene expression, J. Biol. Chem., 286, 39457, 10.1074/jbc.M111.243006 Kim, 2018, H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis, Epigenetics Chromatin, 11, 23, 10.1186/s13072-018-0193-1 Tutar, 2014, miRNA and cancer; computational and experimental approaches, Curr. Pharm. Biotechnol., 15, 429, 10.2174/138920101505140828161335 Le, 2013, Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation, Bioinformatics, 29, i89, 10.1093/bioinformatics/btt231 Eulalio, 2008, Getting to the root of miRNA-mediated gene silencing, Cell, 132, 9, 10.1016/j.cell.2007.12.024 Ferland-McCollough, 2010, The involvement of microRNAs in type 2 diabetes, Biochem. Soc. Trans., 38, 1565, 10.1042/BST0381565 Farazi, 2011, miRNAs in human cancer, J. Pathol., 223, 102, 10.1002/path.2806 Port, 2010, Role of microRNAs in cardiovascular disease: therapeutic challenges and potentials, J. Cardiovasc. Pharmacol., 56, 444, 10.1097/FJC.0b013e3181f605b6 Qu, 2011, Circulating miRNAs: promising biomarkers of human cancer, Asian Pac. J. Cancer Prev., 12, 1117 Adai, 2005, Computational prediction of miRNAs in Arabidopsis thaliana, Genome Res., 15, 78, 10.1101/gr.2908205 Stegmayer, 1654, Computational prediction of novel miRNAs from genome-wide data, Methods Mol. Biol., 2017, 29 Grundhoff, 2011, Computational prediction of viral miRNAs, Methods Mol. Biol., 721, 143, 10.1007/978-1-61779-037-9_8 Mishra, 2011, miRNA prediction using computational approach, Adv. Exp. Med. Biol., 696, 75, 10.1007/978-1-4419-7046-6_8 Lin, 2020, RNAInter in 2020: RNA interactome repository with increased coverage and annotation, Nucleic Acids Res., 48, D189, 10.1093/nar/gkz804 Zhou, 2017, ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data, Nucleic Acids Res., 45, D43, 10.1093/nar/gkw965 Landgraf, 2007, A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, 129, 1401, 10.1016/j.cell.2007.04.040 Kozomara, 2019, miRBase: from microRNA sequences to function, Nucleic Acids Res., 47, D155, 10.1093/nar/gky1141 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Liaw, 2007 Belgiu, 2016, Random forest in remote sensing: a review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24, 10.1016/j.isprsjprs.2016.01.011 Kern, 2020, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Res., 10.1093/nar/gkaa309 Backes, 2016, miEAA: microRNA enrichment analysis and annotation, Nucleic Acids Res., 44, W110, 10.1093/nar/gkw345 Tong, 2019, TransmiR v2.0: an updated transcription factor-microRNA regulation database, Nucleic Acids Res., 47, D253, 10.1093/nar/gky1023 Stockley, 2013, Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects, Blood, 122, 4090, 10.1182/blood-2013-06-506873 Saultier, 2017, Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features, Haematologica, 102, 1006, 10.3324/haematol.2016.153577 Yates, 2019, Ensembl 2020, Nucleic Acids Res., 48, D682 Uhlen, 2015, Proteomics. Tissue-based map of the human proteome, Science, 347, 1260419, 10.1126/science.1260419 UniProt Consortium T, 2018, UniProt: the universal protein knowledgebase, Nucleic Acids Res., 46, 2699, 10.1093/nar/gky092 Brutsch, 2010, Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis, Circ. Res., 107, 592, 10.1161/CIRCRESAHA.110.217257 Qi, 2010, Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development, Nature, 466, 503, 10.1038/nature09261 Fortschegger, 2010, PHF8 targets histone methylation and RNA polymerase II to activate transcription, Mol. Cell. Biol., 30, 3286, 10.1128/MCB.01520-09 Nakagawa, 2000, Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling, Proc. Natl. Acad. Sci. U. S. A., 97, 13655, 10.1073/pnas.250485597 Chen, 2017, Methyltransferase SETD2-mediated methylation of STAT1 Is critical for interferon antiviral activity, Cell, 170, 10.1016/j.cell.2017.06.042 Markert, 2008, The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes, EMBO Rep., 9, 569, 10.1038/embor.2008.72 Zhou, 2004, Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription, J. Virol., 78, 13522, 10.1128/JVI.78.24.13522-13533.2004 Vlachos, 2015, DIANA-miRPath v3.0: deciphering microRNA function with experimental support, Nucleic Acids Res., 43, W460, 10.1093/nar/gkv403 The Gene Ontology C, 2019, The gene ontology resource: 20 years and still GOing strong, Nucleic Acids Res., 47, D330, 10.1093/nar/gky1055 Ashburner, 2000, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet., 25, 25, 10.1038/75556 Kanehisa, 2013, Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res., 42, D199, 10.1093/nar/gkt1076 Vlachos, 2014, DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions, Nucleic Acids Res., 43, D153, 10.1093/nar/gku1215 Reczko, 2012, Functional microRNA targets in protein coding sequences, Bioinformatics, 28, 771, 10.1093/bioinformatics/bts043 Paraskevopoulou, 2013, DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows, Nucleic Acids Res., 41, W169, 10.1093/nar/gkt393 Agarwal, 2015, Predicting effective microRNA target sites in mammalian mRNAs, eLife, 4, 10.7554/eLife.05005 Johnston, 2003, Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling, FEBS Lett., 546, 32, 10.1016/S0014-5793(03)00438-1