Computational investigation of a new ion-pair receptor for calix[4]pyrrole
Tóm tắt
Theoretical studies of a new ion-pair receptor, meso-octamethylcalix[4]pyrrole (OMCP), and its interactions with the halide anions F−, Cl−, and Br− and the cesium halides CsF, CsCl, and CsBr have been performed. Geometries, binding energies, and binding enthalpies were evaluated with the restricted hybrid Becke three-parameter exchange functional (B3LYP) method using the 6-31+G(d) basis set and relativistic effective core potentials. The optimized geometric structures were used to perform natural bond orbital (NBO) analysis. The two typical types of hydrogen bonds, N–H…X− and C–H…X−, were investigated. The results indicate that hydrogen bonding interactions are dominant, and that the halide anions (F−, Cl−, and Br−) offer lone pair electrons to the σ*(N–H) or σ*(C–H) antibonding orbitals of OMCP. In addition, electrostatic interactions between the lone pair electrons of the halide anion and the LP* orbitals of Cs+ as well as cation–π interactions between the metal ion and π-orbitals of the pyrrole rings have important roles to play in the Cs+•OMCP•X− complexes. The current study further demonstrates that this easy-to-make OMCP host compound functions as not only an anion receptor but also an ion-pair receptor.