Computational identification of residues that modulate voltage sensitivity of voltage-gated potassium channels

Springer Science and Business Media LLC - Tập 5 - Trang 1-17 - 2005
Bin Li1,2, Warren J Gallin1,3
1Department of Biological Sciences, University of Alberta, Edmonton
2Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129
3Department of Cell Biology, University of Alberta, Edmonton, Canada

Tóm tắt

Studies of the structure-function relationship in proteins for which no 3D structure is available are often based on inspection of multiple sequence alignments. Many functionally important residues of proteins can be identified because they are conserved during evolution. However, residues that vary can also be critically important if their variation is responsible for diversity of protein function and improved phenotypes. If too few sequences are studied, the support for hypotheses on the role of a given residue will be weak, but analysis of large multiple alignments is too complex for simple inspection. When a large body of sequence and functional data are available for a protein family, mature data mining tools, such as machine learning, can be applied to extract information more easily, sensitively and reliably. We have undertaken such an analysis of voltage-gated potassium channels, a transmembrane protein family whose members play indispensable roles in electrically excitable cells. We applied different learning algorithms, combined in various implementations, to obtain a model that predicts the half activation voltage of a voltage-gated potassium channel based on its amino acid sequence. The best result was obtained with a k-nearest neighbor classifier combined with a wrapper algorithm for feature selection, producing a mean absolute error of prediction of 7.0 mV. The predictor was validated by permutation test and evaluation of independent experimental data. Feature selection identified a number of residues that are predicted to be involved in the voltage sensitive conformation changes; these residues are good target candidates for mutagenesis analysis. Machine learning analysis can identify new testable hypotheses about the structure/function relationship in the voltage-gated potassium channel family. This approach should be applicable to any protein family if the number of training examples and the sequence diversity of the training set that are necessary for robust prediction are empirically validated. The predictor and datasets can be found at the VKCDB web site [1].

Tài liệu tham khảo

Li B, Gallin W: VKCDB.[http://vkcdb.biology.ualberta.ca/] Fleishman SJ, Yifrach O, Ben-Tal N: An evolutionarily conserved network of amino acids mediates gating in voltage-dependent potassium channels. J Mol Biol 2004, 340(2):307–318. 10.1016/j.jmb.2004.04.064 Yellen G: The voltage-gated potassium channels and their relatives. Nature 2002, 419(6902):35–42. 10.1038/nature00978 Jentsch TJ: Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 2000, 1(1):21–30. 10.1038/35036198 Comu S, Giuliani M, Narayanan V: Episodic ataxia and myokymia syndrome: a new mutation of potassium channel gene Kv1.1. Ann Neurol 1996, 40(4):684–687. 10.1002/ana.410400422 Abdul M, Hoosein N: Voltage-gated potassium ion channels in colon cancer. Oncol Rep 2002, 9(5):961–964. Koni PA, Khanna R, Chang MC, Tang MD, Kaczmarek LK, Schlichter LC, Flavella RA: Compensatory anion currents in Kv1.3 channel-deficient thymocytes. Journal of Biological Chemistry 2003, 278(41):39443–39451. 10.1074/jbc.M304879200 Cooper EC: Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia 2001, 42 Suppl 5: 49–54. 10.1046/j.1528-1157.2001.0420s5049.x Ford JW, Stevens EB, Treherne JM, Packer J, Bushfield M: Potassium channels: gene family, therapeutic relevance, high-throughput screening technologies and drug discovery. Progress in Drug Research 2002, 58: 133–168. Lerche H, Jurkat-Rott K, Lehmann-Horn F: Ion channels and epilepsy. American Journal of Medical Genetics 2001, 106(2):146–159. 10.1002/ajmg.1582 Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R: X-ray structure of a voltage-dependent K+ channel. Nature 2003, 423(6935):33–41. 10.1038/nature01580 Larsson HP, Baker OS, Dhillon DS, Isacoff EY: Transmembrane movement of the shaker K+ channel S4. Neuron 1996, 16(2):387–397. 10.1016/S0896-6273(00)80056-2 Sands Z, Grottesi A, Sansom MS: Voltage-gated ion channels. Curr Biol 2005, 15(2):R44–7. 10.1016/j.cub.2004.12.050 Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S: Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nature Structural Biology 1999, 6(1):38–43. 10.1038/4911 Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998, 280(5360):69–77. 10.1126/science.280.5360.69 Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R: The open pore conformation of potassium channels. Nature 2002, 417(6888):523–526. 10.1038/417523a Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA: Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 2003, 300(5627):1922–1926. 10.1126/science.1085028 Sokolova O, Kolmakova-Partensky L, Grigorieff N: Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure (Camb) 2001, 9(3):215–220. 10.1016/S0969-2126(01)00578-0 Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R: Crystal structure and mechanism of a calcium-gated potassium channel. Nature 2002, 417(6888):515–522. 10.1038/417515a Laine M, Papazian DM, Roux B: Critical assessment of a proposed model of Shaker. FEBS Lett 2004, 564(3):257–263. 10.1016/S0014-5793(04)00273-X Heginbotham L, Abramson T, MacKinnon R: A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 1992, 258(5085):1152–1155. MacKinnon R: New insights into the structure and function of potassium channels. Current Opinion in Neurobiology 1991, 1(1):14–19. 10.1016/0959-4388(91)90005-R Miller C: 1990: annus mirabilis of potassium channels. Science 1991, 252(5010):1092–1096. Hille B: Ionic Channels of Excitable Membranes. 3rd edition. Sunderland, Mass. , Sinauer Associates Inc.; 2001:814. Mitchell TM: Machine learning. New York, NY , McGraw-Hill; 1997:xvii, 414 p.. Bose I, Mahapatra RK: Business data mining - a machine learning perspective. Inform Manage 2001, 39(3):211–225. 10.1016/S0378-7206(01)00091-X Hayes WS, Borodovsky M: How to interpret an anonymous bacterial genome: machine learning approach to gene identification. Genome Research 1998, 8(11):1154–1171. Tag PM, Peak JE: Machine learning of maritime fog forecast rules. J Appl Meteorol 1996, 35(5):714–724. Publisher Full Text 10.1175/1520-0450(1996)035<0714:MLOMFF>2.0.CO;2 Ringner M, Peterson C: Microarray-based cancer diagnosis with artificial neural networks. Biotechniques 2003, Suppl: 30–35. Witten IH, Frank E: Data mining : practical machine learning tools and techniques with Java implementations. In The Morgan Kaufmann series in data management systems. San Francisco, CA , Morgan Kaufmann; 2000:xxv, 371 p.. Kohavi R, John GH: Wrappers for feature subset detection. Artificial Intelligence 1997, 97(1–2):273–324. 10.1016/S0004-3702(97)00043-X Almuallim H, Dietterich TG: Learning with many irrelevant features.: Anaheim, CA. MIT Press; 1991:547–552. Kira K, Rendell LA: The feature selection problem: Traditional methods and a new algorithm.: San Jose, CA. MIT Press; 1992:129–134. Li B, Gallin WJ: VKCDB: voltage-gated potassium channel database. BMC Bioinformatics 2004, 5(1):3. 10.1186/1471-2105-5-3 Fry M, Maue RA, Moody-Corbett F: Properties of Xenopus Kv1.10 channels expressed in HEK293 cells. J Neurobiol 2004, 60(2):227–235. 10.1002/neu.20024 Salvador-Recatala V, Gallin WJ, Abbruzzese J, Ruben PC, Spencer AN: The Structure and Function of a Kv4-like Potassium Channel Expressed in the Myocardium of the Tunicate, Ciona intestinalis. Submitted 2004. Weiss JL, Yang J, Jie C, Walker DL, Ahmed S, Zhu Y, Huang Y, Johansen KM, Johansen J: Molecular cloning and characterization of LKv1, a novel voltage-gated potassium channel in leech. J Neurobiol 1999, 38(2):287–299. 10.1002/(SICI)1097-4695(19990205)38:2<287::AID-NEU10>3.0.CO;2-U Li-Smerin Y, Hackos DH, Swartz KJ: alpha-helical structural elements within the voltage-sensing domains of a K(+) channel. Journal of General Physiology 2000, 115(1):33–50. 10.1085/jgp.115.1.33 Treptow W, Maigret B, Chipot C, Tarek M: Coupled Motions between Pore and Voltage-Sensor Domains: A Model for Shaker B, a Voltage-Gated Potassium Channel. Biophys J 2004, 87(4):2365–2379. 10.1529/biophysj.104.039628 Yellen G: The moving parts of voltage-gated ion channels. Q Rev Biophys 1998, 31(3):239–295. 10.1017/S0033583598003448 Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572–1574. 10.1093/bioinformatics/btg180 Maddison DR, Maddison WP: MacClade 4: Analysis of phylogeny and character evolution. 4.06th edition. Sinauer Associates, Sunderland, Massachusetts; 2003. Mendez MA, Hodar C, Vulpe C, Gonzalez M, Cambiazo V: Discriminant analysis to evaluate clustering of gene expression data. FEBS Letters 2002, 522(1–3):24–28. 10.1016/S0014-5793(02)02873-9 Nguyen DV, Rocke DM: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002, 18(1):39–50. 10.1093/bioinformatics/18.1.39 Adams ENIII: Consensus techniques and the comparison of taxonomic trees. Systematic Zoology 1972, 21: 390–397. Rettig J, Wunder F, Stocker M, Lichtinghagen R, Mastiaux F, Beckh S, Kues W, Pedarzani P, Schroter KH, Ruppersberg JP, et al.: Characterization of a Shaw-related potassium channel family in rat brain. EMBO Journal 1992, 11(7):2473–2486. Scholle A, Koopmann R, Leicher T, Ludwig J, Pongs O, Benndorf K: Structural elements determining activation kinetics in Kv2.1. Receptors Channels 2000, 7(1):65–75. Schroter KH, Ruppersberg JP, Wunder F, Rettig J, Stocker M, Pongs O: Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain. FEBS Letters 1991, 278(2):211–216. 10.1016/0014-5793(91)80119-N Stuhmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S: Structural parts involved in activation and inactivation of the sodium channel. Nature 1989, 339: 597–603. 10.1038/339597a0 Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, Jurman ME, Lawson D, Silos-Santiago I, Xie Y, Covarrubias M, Rhodes KJ, Distefano PS, An WF: Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proceedings of the National Academy of Sciences of the United States of America 2002, 99(2):1035–1040. 10.1073/pnas.022509299 Overturf KE, Russell SN, Carl A, Vogalis F, Hart PJ, Hume JR, Sanders KM, Horowitz B: Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles. American Journal of Physiology 1994, 267(5 Pt 1):C1231–8. Patton DE, Silva T, Bezanilla F: RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron 1997, 19(3):711–722. 10.1016/S0896-6273(00)80383-9 de Lichtenberg U, Jensen LJ, Fausboll A, Jensen TS, Bork P, Brunak S: Comparison of computational methods for the identification of cell cycle regulated genes. Bioinformatics 2005, 21: 1164–1171. 10.1093/bioinformatics/bti093 Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A, Mackey J, Wishart D, Greiner R, Zanke B: Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin Cancer Res 2004, 10(8):2725–2737. Potter DM: A permutation test for inference in logistic regression with small- and moderate-sized data sets. Stat Med 2004. Routledge RD: P-values from permutation and F-tests. Comput Stat Data An Comput Stat Data An 1997, 24(4):379–386. 10.1016/S0167-9473(96)00073-4 Rae JL, Shepard AR: Kv3.3 potassium channels in lens epithelium and corneal endothelium. Exp Eye Res 2000, 70(3):339–348. 10.1006/exer.1999.0796 Tiwari-Woodruff SK, Lin MA, Schulteis CT, Papazian DM: Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol 2000, 115(2):123–138. 10.1085/jgp.115.2.123 Tiwari-Woodruff SK, Schulteis CT, Mock AF, Papazian DM: Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J 1997, 72(4):1489–1500. Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH: Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 1995, 14(6):1293–1301. 10.1016/0896-6273(95)90276-7 Seoh SA, Sigg D, Papazian DM, Bezanilla F: Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 1996, 16(6):1159–1167. 10.1016/S0896-6273(00)80142-7 Jan LY, Jan YN: Voltage-gated and inwardly rectifying potassium channels. J Physiol 1997, 505 ( Pt 2): 267–282. 10.1111/j.1469-7793.1997.267bb.x Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R: The principle of gating charge movement in a voltage-dependent K+ channel. Nature 2003, 423(6935):42–48. 10.1038/nature01581 Wishart DS, Boyko RF, Sykes BD: Constrained multiple sequence alignment using XALIGN. Computer Applications in the Biosciences 1994, 10(6):687–688. Cardie C: Using decision trees to improve case-based learning.: San Meteo, CA. Morgan Kaufmann Publishers, Inc.; 1993:25–32. Schwartz RM, Dayhoff MO: Matrices for detecting distant relationships. In Atlas of Protein Sequence and Structure. Volume 5, suppl. 3. Edited by: Dayhoff MO. Washington, D.C. , Natl. Biolmed. Res. Found.; 1978:345–352. Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America 1992, 89(22):10915–10919. Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods in Enzymology 1996, 266: 383–402. Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). 4th edition. Sunderland, Massachusetts , Sinauer Associates; 2000. Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5(1):113. 10.1186/1471-2105-5-113