Computational heuristics for solving nonlinear singular Thomas–Fermi equation with genetic exponential collocation algorithm

Noman Yousaf1, Wasi uz Zaman1, Aneela Zameer2, Sikander M. Mirza3, Rubina Nasir1
1Department of Physics, AIR University, PAF Complex, E-9, Islamabad, 44000, Pakistan
2Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
3Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

I. Ahmad et al., Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model. Springerplus 5(1), 1866 (2016)

R. Ying, G. Kalman, Thomas-Fermi model for dense plasmas. Phys. Rev. A Gen. Phys. 40(7), 3927–3950 (1989)

K. Umeda, Y. Tomishima, On the influence of the packing on the atomic scattering factor based on the thomas-fermi theory. J. Phys. Soc. Jpn. 10(9), 753–758 (1955)

A.J. Callegari, E.L. Reiss, Non-linear boundary value problems for the circular membrane. Arch. Ration. Mech. Anal. 31(5), 390–400 (1968)

J.V. Baxley, A singular nonlinear boundary value problem: membrane response of a spherical cap. SIAM J. Appl. Math. 48(3), 497–505 (1988)

N. Anderson, A.M. Arthurs, Analytical bounding functions for diffusion problems with Michaelis-Menten kinetics. Bull. Math. Biol. 47(1), 145–153 (1985)

M.A.Z. Raja et al., A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus. 133(9), 364 (2018)

J.B. Garner, Analysis of diffusion problems in physiology. Math. Comput. Model. 11, 469–471 (1988)

O. Makinde, Non-perturbative solutions of a nonlinear heat conduction model of the human head. Sci. Res. Essays. 5, 529–532 (2010)

L.H. Thomas, The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc. 23(5), 542–548 (1927)

M.S. Vallarta, N. Rosen, The relativistic thomas-fermi atom. Phys. Rev, 41(6), 708–712 (1932)

N.H. March, Thomas-Fermi fields for molecules with tetrahedral and octahedral symmetry. Math. Proc. Cambridge Philos. Soc. 48(4), 665–682 (1952)

B. Banerjee, D.H. Constantinescu, P. Rehák, Thomas-Fermi and Thomas-Fermi-Dirac calculations for atoms in a very strong magnetic field. Phys. Rev. D. 10(8), 2384–2395 (1974)

Y. Tomishima, K. Yonei, Thomas-Fermi theory for atoms in a strong magnetic field. Progress Theoret. Phys. 59, 683 (1978)

K. Parand, M. Dehghan, A. Pirkhedri, The Sinc-collocation method for solving the Thomas-Fermi equation. J. Comput. Appl. Math. 237(1), 244–252 (2013)

F. Bayatbabolghani, and K. Parand Using Hermite Function for Solving Thomas-Fermi Equation. arXiv: 1604.01454 (2016)

Z. Mao, G. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, 24–49 (2018)

C. Liu, S. Zhu, Laguerre pseudospectral approximation to the Thomas-Fermi equation. J. Comput. Appl. Math. 282(C), 251–261 (2015)

M. Vasile, R.D. Ene, Analytical approximate solutions to the Thomas-Fermi equation. Open Phys. 12(7), 503–510 (2014)

M. Kajani, A. Kilicman, and M. Maleki, in The Rational Third-Kind Chebyshev Pseudospectral Method for the Solution of the Thomas-Fermi Equation over Infinite Interval. Mathematical Problems in Engineering. 2013 (2013).

P. Amore, J.P. Boyd, F.M. Fernández, Accurate calculation of the solutions to the Thomas-Fermi equations. Appl. Math. Comput. 232, 929–943 (2014)

U. Filobello-Nino, et al., Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study. J. Appl. Math. 2015 (2015).

F. Alharbi, Predefined exponential basis set for half-bounded multi domain spectral method, in 2009 9th International Conference on Numerical Simulation of Optoelectronic Devices. (2009) 77–78.

D. domiri ganji, and A. Gholami Davodi, An Application of Exp-Function Method to Approximate General and Explicit Solutions for Nonlinear Schrodinger Equations. Numerical Methods for Partial Differential Equations. 27 (2011).

R. Shanmugam, Generalized exponential and logarithmic polynomials with statistical applications. Int. J. Math. Educ. Sci. Technol. 19, 659–669 (1988)

L. Székelyhidi, On the extension of exponential polynomials. Math. Bohem. 125, 365–370 (2000)

E. Hewitt, and K.A. Ross, Abstract harmonic analysis. Volume II, Volume II. (1970).

D.S. Porta, M. Chirinos, M.J. Stock, Comparison of variational solutions of the Thomas-Fermi model in terms of the ionization energy. Revista Mexicana de Fisica. 62, 538–542 (2016)

F.M. Fernández, Rational approximation to the Thomas-Fermi equations. Appl. Math. Comput. 217(13), 6433–6436 (2011)

M.A.Z. Raja et al., A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. Springerplus 5(1), 1400 (2016)

Z. Sabir et al., Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput. 65(C), 152–169 (2018)

D. Gutierrez-Navarro, S. Lopez-Aguayo, Solving ordinary differential equations using genetic algorithms and the Taylor series matrix method. J. Phys. Commun. 2(11), 115010 (2018)

M.A. Raja et al., Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput. Appl. 29(6), 83–109 (2018)

P. Abolfazl, R. Ebrahimi, M. Mirzaei, M. Shams, Applying genetic algorithms for solving nonlinear algebraic equations. Appl. Math. Comput. 219(24), 11483–11494 (2013)

M. Chhavi, M. Ahmad, M. Uddin, Genetic algorithm based optimization for system of nonlinear equations. Int. J. Adv. Technol. Eng. Explor. 5(44), 187–194 (2018)

Noghabi, H. Sharifi, H. Rajabi Mashhadi, and K. Shojaei, Differential evolution with generalized mutation operator for parameters optimization in gene selection for cancer classification. arXiv preprint arXiv:1510.02516 (2015).

L. Liping, X. Liu, N. Wang, P. Zou, Modified cuckoo search algorithm with variational parameters and logistic map. Algorithms 11(3), 30 (2018)

M. Babaei, A general approach to approximate solutions of nonlinear differential equations using particle swarm optimization. Appl. Soft Comput. 13(7), 3354–3365 (2013)

E. Di Grezia, S. Esposito, Fermi, majorana and the statistical model of atoms. Found. Phys. 34(9), 1431–1450 (2004)

M. Oulne, Analytical solution of the Thomas-Fermi equation for atoms. 4 (2005).

M.S. Wu, Modified variational solution of the Thomas-Fermi equation for atoms. Phys. Rev. A. 26(1), 57–61 (1982)

C. Srinivas, B.R. Reddy, K. Ramji, R. Naveen, Sensitivity analysis to determine the parameters of genetic algorithm for machine layout. Procedia Mater. Sci. 6, 866–876 (2014)

J. Im, C.B. Rizzo, F.P. de Barros, S.F. Masri, Application of genetic programming for model-free identification of nonlinear multi-physics systems. Nonlinear Dyn. 104(2), 1781–1800 (2021)