Computational fluid dynamics applied to membranes: State of the art and opportunities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sondhi, 2003, Applications and benefits of ceramic membranes, Membr. Technol., 2003, 5, 10.1016/S0958-2118(03)11016-6
J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, 2nd ed., Springer Publisher, NY, 2002, 423 pp. (ISBN: 3-540-42074-6).
Berman, 1953, Laminar flow in channels with porous walls, J. Appl. Phys., 24, 1232, 10.1063/1.1721476
Terrill, 1964, Laminar flow in a uniformly porous channel, Aeronautical, 15, 299, 10.1017/S0001925900010908
Friedman, 1967, Viscous flow in a pipe with absorbing walls, J. Appl. Mech., 34, 819, 10.1115/1.3607840
Mizushina, 1971, Study of flow in a porous tube with radial mass flux, J. Chem. Eng., 4, 135, 10.1252/jcej.4.135
Galowin, 1974, Investigation of laminar flow in a porous pipe with variable wall suction, AIAA, 12, 1585, 10.2514/3.49549
Belfort, 1985, Fluid mechanics and cross-flow filtration: some thoughts, Desalination, 53, 57, 10.1016/0011-9164(85)85052-9
Belfort, 1989, Fluid mechanics in membrane filtration: recent developments, J. Membr. Sci., 40, 123, 10.1016/0376-7388(89)89001-5
C. Hirsch, Numerical Computation of Internal and External Flows, Volume 2: Computational methods for inviscid and viscous flows, Engineering Analysis with Boundary Elements, 3 (1992) 277.
Karode, 2001, Laminar flow in channels with porous walls, revisited, J. Membr. Sci., 191, 237, 10.1016/S0376-7388(01)00546-4
Marriott, 2001, Detailed mathematical modelling of membrane modules, Comput. Chem. Eng., 25, 693, 10.1016/S0098-1354(01)00670-6
Marriott, 2003, A general approach to modelling membrane modules, Chem. Eng. Sci., 58, 4975, 10.1016/j.ces.2003.07.005
Nassehi, 1998, Modelling of combined Navier–Stokes and Darcy flows in crossflow membrane filtration, Chem. Eng. Sci., 53, 1253, 10.1016/S0009-2509(97)00443-0
Das, 2002, A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions, Adv. Environ. Res., 7, 35, 10.1016/S1093-0191(01)00108-3
Damak, 2004, A new Navier–Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes, Desalination, 161, 67, 10.1016/S0011-9164(04)90041-0
Chen, 2004, In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration, Adv. Colloid Interf. Sci., 107, 83, 10.1016/j.cis.2003.10.018
Geissler, 1995, Dynamic model of crossflow microfiltration in flat-channel systems under laminar flow conditions, Filtration Separat., 32, 533, 10.1016/S0015-1882(97)84108-0
Lee, 1998, Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions, J. Membr. Sci., 149, 181, 10.1016/S0376-7388(98)00177-X
Carroll, 2001, The effect of cake and fibre properties on flux declines in hollow-fibre microfiltration membranes, J. Membr. Sci., 189, 167, 10.1016/S0376-7388(01)00412-4
Huang, 1999, Finite element analysis as a tool for crossflow membrane filter simulation, J. Membr. Sci., 155, 19, 10.1016/S0376-7388(98)00300-7
Richardson, 2003, Finite element modelling of concentration profiles in flow domains with curved porous boundaries, Chem. Eng. Sci., 58, 2491, 10.1016/S0009-2509(03)00118-0
Bouchard, 1994, Modeling of ultrafiltration: prediction of concentration polarization effects, J. Membr. Sci., 97, 215, 10.1016/0376-7388(94)00164-T
Singh, 1979, Influence of slip velocity at membrane surface on ultrafiltration performance. I. Channel flow system, Int. J. Heat Mass Transfer, 22, 721, 10.1016/0017-9310(79)90119-4
Lebrun, 1989, Computer simulation of membrane separation processes, Chem. Eng. Sci., 44, 313, 10.1016/0009-2509(89)85067-5
Chatterjee, 2004, Modeling of a radial flow hollow fiber module and estimation of model parameters using numerical techniques, J. Membr. Sci., 236, 1, 10.1016/j.memsci.2004.01.006
Sekino, 1993, Precise analytical model of hollow fibre reverse osmosis modules, J. Membr. Sci., 85, 241, 10.1016/0376-7388(93)85278-5
Sekino, 1996, Study of an analytical model for hollow fiber reverse osmosis module systems, Desalination, 100, 85, 10.1016/0011-9164(96)00010-0
Ben-Boudinar, 1992, Numerical simulation and optimization of spiral wound modules, Desalination, 86, 273, 10.1016/0011-9164(92)80038-B
Geraldes, 1998, Nanofiltration mass transfer at the entrance region of a slit laminar flow, Ind. Eng. Chem., 37, 87
Geraldes, 2001, Flow and mass transfer modelling of nanofiltration, J. Membr. Sci., 191, 109, 10.1016/S0376-7388(01)00458-6
Geraldes, 2002, The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall, Chem. Eng. Sci., 57, 735, 10.1016/S0009-2509(01)00441-9
Miranda, 2001, Concentration polarization in a membrane placed under an impinging jet confined by a conical wall, a numerical approach, J. Membr. Sci., 182, 257, 10.1016/S0376-7388(00)00572-X
Magueijo, 2002, Numerical and experimental study of mass transfer in lysozyme ultrafiltration, Desalination, 145, 193, 10.1016/S0011-9164(02)00408-3
De Pinho, 2002, Integrated modelling of transport processes in fluid/nanofiltration membrane systems, J. Membr. Sci., 206, 189, 10.1016/S0376-7388(01)00761-X
Wiley, 2003, Techniques for computational fluid dynamics modelling of flow in membrane channels, J. Membr. Sci., 211, 127, 10.1016/S0376-7388(02)00412-X
Fletcher, 2004, A computational fluids dynamics study of buoyancy effects in reverse osmosis, J. Membr. Sci., 245, 175, 10.1016/j.memsci.2004.07.023
Wilcox, 1998
Pellerin, 1995, Turbulent transport in membrane modules by CFD simulation in two dimensions, J. Membr. Sci., 100, 139, 10.1016/0376-7388(94)00250-3
Miyake, 1995, Direct numerical simulation of a turbulent flow in a channel having periodic pressure gradient, Int. J. Heat Fluid Flow, 16, 333, 10.1016/0142-727X(95)00053-S
Kotzev, 1994, Numerical study of the fluid dynamics and mass transfer of an ultrafiltration performance in a tube membrane module, Int. J. Eng. Sci., 32, 359, 10.1016/0020-7225(94)90015-9
Redkar, 1996, Modeling of concentration polarization and depolarization with high-frequency backpulsing, J. Membr. Sci., 121, 229, 10.1016/S0376-7388(96)00179-2
Wang, 1994, Simulation of cross-flow filtration for baffled tubular channels and pulsatile flow, J. Membr. Sci., 95, 243, 10.1016/0376-7388(94)00130-8
Cabassud, 1997, How slug flow can enhance the ultrafiltration flux in organic hollow fibres, J. Membr. Sci., 128, 93, 10.1016/S0376-7388(96)00316-X
Wang, 1994, Simulation of crossflow filtration for baffled tubular channels and pulsatile flow, J. Membr. Sci., 95, 243, 10.1016/0376-7388(94)00130-8
Taitel, 1980, Modeling flow pattern transition for steady upward gas-liquid flow in vertical tubes, AIChE J., 26, 345, 10.1002/aic.690260304
Mao, 1990, The motion of Taylor bubbles in vertical tubes: a numerical simulation for the shape and the rise velocity of Taylor bubbles in stagnant and flowing liquids, J. Comput. Phys., 91, 132, 10.1016/0021-9991(90)90008-O
Bellara, 1996, Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes, J. Membr. Sci., 121, 175, 10.1016/S0376-7388(96)00173-1
Cui, 1996, Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism, J. Membr. Sci., 117, 109, 10.1016/0376-7388(96)00040-3
Li, 1997, Effect of bubble size and frequency on the permeate flux of gas-sparged ultrafiltration with tubular membranes, J. Membr. Sci., 67, 71
Ghosh, 1999, Mass-transfer in gas-sparged ultrafiltration upward slug flow in tubular membranes, J. Membr. Sci., 162, 91, 10.1016/S0376-7388(99)00126-X
Stanton, 2002, Enhancing hollow fibre ultrafiltration using slug-flow a hydrodynamic study, Desalination, 146, 69, 10.1016/S0011-9164(02)00491-5
Taha, 2002, Hydrodynamic analysis of upward slug flow in tubular membranes, Desalination, 145, 179, 10.1016/S0011-9164(02)00405-8
Cao, 2001, CFD simulations of net-type turbulence promoters in a narrow channel, J. Membr. Sci., 185, 157, 10.1016/S0376-7388(00)00643-8
Chatterjee, 1986, Fluid flow in an idealized spiral wound membrane module, J. Membr. Sci., 28, 191, 10.1016/S0376-7388(00)82210-3
Koutsou, 2004, Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters, J. Membr. Sci., 231, 81, 10.1016/j.memsci.2003.11.005
Geraldes, 2002, Flow management in nanofiltration spiral wound modules with ladder-type spacers, J. Membr. Sci., 203, 87, 10.1016/S0376-7388(01)00753-0
Li, 2002, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci., 208, 289, 10.1016/S0376-7388(02)00307-1
Geraldes, 2002, The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption, Desalination, 146, 187, 10.1016/S0011-9164(02)00467-8
Costigan, 2002, Flux enhancement in microfiltration by corkscrew vortices formed in helical flow passages, J. Membr. Sci., 206, 179, 10.1016/S0376-7388(01)00780-3
Geraldes, 2003, Hydrodynamics and concentration polarization in NF/RO spiral-wound modules with ladder-type spacers, Desalination, 157, 395, 10.1016/S0011-9164(03)00422-3
Schwinge, 2002, A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules, Desalination, 146, 195, 10.1016/S0011-9164(02)00470-8
Wiley, 2002, Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes, Desalination, 145, 183, 10.1016/S0011-9164(02)00406-X
Li, 2004, Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers, J. Membr. Sci., 232, 19, 10.1016/j.memsci.2003.11.015
Karode, 2001, Flow visualization through spacer filled channels by computational fluid dynamics: pressure drop and shear rate calculations for flat sheet geometry, J. Membr. Sci., 193, 69, 10.1016/S0376-7388(01)00494-X
Bellhouse, 2001, The performance of helical screw-thread inserts in tubular membranes, Separat. Purific. Technol., 22, 89, 10.1016/S1383-5866(00)00145-3
Dean, 1928, Fluid motion in a curved channel, Proc. R. Soc., London Ser., 121, 402, 10.1098/rspa.1928.0205
Moulin, 2001, Dean vortices: comparison of numerical simulation of shear stress and improvement of mass transfer in membrane processes at low permeation fluxes, J. Membr. Sci., 183, 149, 10.1016/S0376-7388(00)00556-1
Brewster, 1993, Dean vortices with wall flux in a curved channel membrane system: a new approach to membrane module design, J. Membr. Sci., 81, 127, 10.1016/0376-7388(93)85037-W
Mallubhotla, 2001, Dean vortex stability using magnetic resonance flow imaging and numerical analysis, AIChE J., 47, 1126, 10.1002/aic.690470519
Wakeman, 2002, Additional techniques to improve microfiltration, Separat. Purific. Technol., 26, 3, 10.1016/S1383-5866(01)00112-5
Moll, 2002, Numerical simulation of Dean vortices: fluid trajectories, J. Membr. Sci., 197, 157, 10.1016/S0376-7388(01)00606-8
Agrawal, 1994, Numerical simulation of dispersion in the flow of power law fluids in curved tubes, Appl. Math. Model., 18, 504, 10.1016/0307-904X(94)90329-8
D.N. Kuakuvi, P. Moulin, D. Veyret, P. Guichardon, F. Charbit, Dean Vortices: Numerical simulation of shear stress and experimental improvement of mass transfer in ultrafiltration process, International Congress on Membranes (ICOM’99), Toronto, Canada, 1999.
Winzeler, 1993, Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities, J. Membr. Sci., 80, 35, 10.1016/0376-7388(93)85130-O
Bolinder, 1995, Flow visualization and LDV measurements of laminar flow in a helical square duct with finite pitch, Exp. Thermal Fluid Sci., 11, 348, 10.1016/0894-1777(95)00040-2
Bubolz, 2002, The use of dean vortices for crossflow microfiltration: basic principles and further investigation, Separat. Purific. Technol., 26, 81, 10.1016/S1383-5866(01)00119-8
T.T. Chandratilleke, Nursubyakto, Numerical prediction of secondary flow and convective heat transfer in externally heated curved rectangular ducts, Int. J. Thermal Sci., 42 (2003) 187–198.
Ookawara, 2004, Feasibility study on concentration of slurry and classification of contained particles by microchannel, Chem. Eng. J., 101, 171, 10.1016/j.cej.2003.11.008
Belfort, 1988, Membrane modules: comparison of different configurations using fluid mechanics, J. Membr. Sci., 35, 245, 10.1016/S0376-7388(00)80299-9
Tarabara, 2003, Computational fluid dynamics modeling of the flow in a laboratory membrane filtration cell operated at low recoveries, Chem. Eng. Sci., 58, 239, 10.1016/S0009-2509(02)00436-0
Dolecek, 1995, Mathematical modelling of permeate flow in multichannel ceramic membrane, J. Membr. Sci., 100, 111, 10.1016/0376-7388(94)00258-Z
Dolecek, 1998, Permeate flow in hexagonal 19-channel inorganic membrane under filtration and backflush operating modes, J. Membr. Sci., 149, 171, 10.1016/S0376-7388(98)00195-1