Computational aspects of Calogero–Moser spaces

Selecta Mathematica - Tập 29 - Trang 1-46 - 2023
Cédric Bonnafé1, Ulrich Thiel
1IMAG, Université de Montpellier, CNRS, Montpellier, France

Tóm tắt

We present a series of algorithms for computing geometric and representation-theoretic invariants of Calogero–Moser spaces and rational Cherednik algebras associated with complex reflection groups. In particular, we are concerned with Calogero–Moser families (which correspond to the $$\mathbb {C}^\times $$ -fixed points of the Calogero–Moser space) and cellular characters (a proposed generalization by Rouquier and the first author of Lusztig’s constructible characters based on a Galois covering of the Calogero–Moser space). To compute the former, we devised an algorithm for determining generators of the center of the rational Cherednik algebra (this algorithm has several further applications), and to compute the latter we developed an algorithmic approach to the construction of cellular characters via Gaudin operators. We have implemented all our algorithms in the Cherednik Algebra Magma Package by the second author and used this to confirm open conjectures in several new cases. As an interesting application in birational geometry we are able to determine for many exceptional complex reflection groups the chamber decomposition of the movable cone of a $$\mathbb {Q}$$ -factorial terminalization (and thus the number of non-isomorphic relative minimal models) of the associated symplectic singularity. Making possible these computations was also a source of inspiration for the first author to propose several conjectures about the geometry of Calogero–Moser spaces (cohomology, fixed points, symplectic leaves), often in relation with the representation theory of finite reductive groups.

Tài liệu tham khảo

Beauville, A.: Symplectic singularities. Invent. Math. 139, 541–549 (2000) Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010) Bellamy, G.: Cuspidal representations of rational Cherednik algebras at \(t=0\). Math. Z. 269, 609–627 (2011) Bellamy, G.: Counting resolutions of symplectic quotient singularities. Compos. Math. 152, 99–114 (2016) Bellamy, G., Bonnafé, C., Fu, B., Juteau, D., Levy, M., Sommers, E.: A new family of isolated symplectic singularities with trivial local fundamental group. Proc. Lond. Math. Soc. 126, 1496–1521 (2023) Bellamy, G., Schedler, T., Thiel, U.: Hyperplane arrangements associated with symplectic quotient singularities, Phenomenological approach to algebraic geometry, 25-45, Banach Center Publ., 116, Polish Acad. Sci. Inst. Math., Warsaw (2018) Bellamy, G., Schmitt, J., Thiel, U.: Towards the classification of symplectic linear quotient singularities admitting a symplectic resolution. Math. Z. 300, 661–681 (2022) Bellamy, G., Thiel, U.: Cuspidal Calogero–Moser and Lusztig families for Coxeter groups. J. Algebra 462, 197–252 (2016) Benard, M.: Schur indices and splitting fields of the unitary reflection groups. J. Algebra 38, 318–342 (1976) Benson, D. J.: Polynomial invariants of finite groups, London Math. Soc. Lecture Note Series 190. Cambridge University Press, Cambridge (1993) Bessis, D.: Sur le corps de définition d’un groupe de réflexions complexe. Comm. Algebra 25, 2703–2716 (1997) Bonnafé, C.: On the Calogero-Moser space associated with dihedral groups. Ann. Math. Blaise Pascal 25, 265–298 (2018) Bonnafé, C.: On the Calogero–Moser space associated with dihedral groups II, The equal parameter case, preprint (2021). arXiv:2112.12401 (To appear in Ann. Math. Blaise Pascal) Bonnafé, C.: Automorphisms and symplectic leaves of Calogero–Moser spaces. J. Aust. Math. Soc. 115, 26–57 (2023) Bonnafé, C.: Regular automorphisms and Calogero–Moser families, Preprint (2021). arxiv:2112.13685 (To appear in Revista de la Unión Matemática Argentina) Bonnafé, C.: Calogero–Moser spaces vs unipotent representations, preprint (2021). arXiv:2112.13684 (To appear in Pure and App. Math. Quart) Bonnafé, C., Maksimau, R.: Fixed points in smooth Calogero–Moser spaces. Ann. Inst. Fourier 71, 643–678 (2021) Bonnafé, C., Rouquier, R.: Calogero–Moser versus Kazhdan–Lusztig cells. Pac. J. Math. 261, 45–51 (2013) Bonnafé, C., Rouquier, R.: Cherednik algebras and Calogero–Moser cells. arXiv:1708.09764 Bourbaki, N.: Algèbre commutative, chapitres 5, 6, 7 Broué, M.: Introduction to complex reflection groups and their braid groups, Lecture Notes in Mathematics 1988. Springer (2010) Brochier, A., Gordon, I., White, N.: Gaudin Algebras, RSK and Calogero–Moser Cells in Type A. Proc. Lond. Math. Soc. 126, 1467–1495 (2023) Broué, M., Kim, S.: Familles de caractères des algèbres de Hecke cyclotomiques. Adv. Math. 172, 53–136 (2002) Broué, M., Malle, G., Michel, J.: Towards Spetses I. Transf. Groups 4, 157–218 (1999) Brown, K., Gordon, I.: Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math. 559, 193–216 (2003) Calogero, F.: Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971) Chlouveraki, M.: Sur les algèbres de Hecke cyclotomiques des groupes de réflexions complexes, thèse, Paris 7 (2007) Chlouveraki, M.: Rouquier blocks of the cyclotomic Hecke algebras. C. R. Math. Acad. Sci. Paris 344, 615–620 (2007) Chlouveraki, M.: Rouquier blocks of the cyclotomic Ariki–Koike algebras. Algebra Number Theory 2, 689–720 (2008) Chlouveraki, M.: Blocks and families for cyclotomic Hecke algebras, Lecture Notes in Mathematics 1981. Springer (2009) Chlouveraki, M.: Rouquier blocks of the cyclotomic Hecke algebras of \(G(de, e, r)\). Nagoya Math. J. 197, 175–212 (2010) Curtis, C. W., Reiner, I.: Methods of representation theory, Vol. I, With applications to finite groups and orders. Pure and Applied Mathematics, A Wiley-Interscience Publication. Wiley, New York (1981) Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147, 243–348 (2002) Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \({\mathscr {C} }\) for rational Cherednik algebras. Invent. Math. 154, 617–651 (2003) Ginzburg, V., Kaledin, D.: Poisson deformations of symplectic quotient singularities. Adv. Math. 186, 1–57 (2004) Gordon, I.: Baby Verma modules for rational Cherednik algebras. Bull. Lond. Math. Soc. 35, 321–336 (2003) Gordon, I.: Symplectic reflection algebras, in Trends in representation theory of algebras and related topics, 285-347, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2008) Gordon, I.G., Martino, M.: Calogero–Moser space, restricted rational Cherednik algebras and two-sided cells. Math. Res. Lett. 16, 255–262 (2009) Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979) King, S.: Minimal generating sets of non-modular invariant rings of finite groups. J. Symbolic Comput. 48, 101–109 (2013) Kollár, J.: Singularities of the minimal model program, Cambridge Tracts in Mathematics, Vol. 200. Cambridge University Press, Cambridge (2013) Lehn, M., Sorger, C.: A symplectic resolution for the binary tetrahedral group, Geometric methods in representation theory. II, 429-435, Sémin. Congr., 24-II, Soc. Math. France, Paris (2012) Lusztig, G.: Left cells in Weyl groups, in Lie group representations, I, 99–111. Lecture Notes in Math, vol. 1024. Springer, Berlin (1983) Lusztig, G.: Characters of reductive groups over finite fields. Ann. Math. Studies 107, Princeton UP (1984) Lusztig, G.: Hecke Algebras with Unequal Parameters. CRM Monograph Series 18, American Mathematical Society, Providence, RI (2003) Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997) Malle, G.: Spetses, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math., Extra Vol. II, 87–96 (1998) Malle, G., Rouquier, R.: Familles de caractères de groupes de réflexions complexes. Represent. Theory 7, 610–640 (2003) Martino, M.: The Calogero–Moser partition and Rouquier families for complex reflection groups. J. Algebra 323, 193–205 (2010) Martino, M.: Blocks of restricted rational Cherednik algebras for \(G(m, d, n)\). J. Algebra 397, 209–224 (2014) Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975) Namikawa, Y.: Poisson deformations of affine symplectic varieties. Duke Math. J. 156, 51–85 (2011) Namikawa, Y.: Poisson deformations and birational geometry. J. Math. Sci. Univ. Tokyo 22, 339–359 (2015) The Sage Developers, SageMath, the Sage Mathematics Software System. https://www.sagemath.org Schmitt, J.: On \({\mathbb{Q}}\)-factorial terminalizations of symplectic linear quotient singularities, PhD thesis. University of Kaiserslautern–Landau (2023) Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954) Thiel, U.: A counter-example to Martino’s conjecture about generic Calogero–Moser families. Algebr. Represent. Theory 17(5), 1323–1348 (2014) Thiel, U.: CHAMP: a Cherednik algebra magma package. LMS J. Comput. Math. 18, 266–307 (2015) Thiel, U.: Blocks in flat families of finite-dimensional algebras. Pac. J. Math. 295, 191–240 (2018) Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. 154, 1 (1975)