Computational approaches to detect allosteric pathways in transmembrane molecular machines
Tài liệu tham khảo
Motlagh, 2014, The ensemble nature of allostery, Nature, 508, 331, 10.1038/nature13001
Nussinov, 2015, Allostery without a conformational change? Revisiting the paradigm, Curr. Opin. Struct. Biol., 30, 17, 10.1016/j.sbi.2014.11.005
Gunasekaran, 2004, Is allostery an intrinsic property of all dynamic proteins?, Proteins, 57, 433, 10.1002/prot.20232
LeVine, 2016, Allosteric mechanisms of molecular machines at the membrane: transport by sodium-coupled symporters, Chem. Rev., 10.1021/acs.chemrev.5b00627
Monod, 1965, On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88, 10.1016/S0022-2836(65)80285-6
Koshland, 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry, 5, 365, 10.1021/bi00865a047
Bray, 2004, Conformational spread: the propagation of allosteric states in large multiprotein complexes, Annu. Rev. Biophys. Biomol. Struct., 33, 53, 10.1146/annurev.biophys.33.110502.132703
Swain, 2006, The changing landscape of protein allostery, Curr. Opin. Struct. Biol., 16, 102, 10.1016/j.sbi.2006.01.003
Jardetzky, 1966, Simple allosteric model for membrane pumps, Nature, 211, 969, 10.1038/211969a0
Krishnamurthy, 2012, X-ray structures of LeuT in substrate-free outward-open and apo inward-open states, Nature, 481, 469, 10.1038/nature10737
Singh, 2008, A competitive inhibitor traps LeuT in an open-to-out conformation, Science, 322, 1655, 10.1126/science.1166777
Yamashita, 2005, Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters, Nature, 437, 215, 10.1038/nature03978
Krishnamurthy, 2009, Unlocking the molecular secrets of sodium-coupled transporters, Nature, 459, 347, 10.1038/nature08143
Kristensen, 2011, SLC6 neurotransmitter transporters: structure, function, and regulation, Pharmacol. Rev., 63, 585, 10.1124/pr.108.000869
Shi, 2012, 9.7 molecular modeling and simulations of transporter proteins – the transmembrane allosteric machinery, 105
Yernool, 2004, Structure of a glutamate transporter homologue from Pyrococcus horikoshii, Nature, 431, 811, 10.1038/nature03018
Reyes, 2009, Transport mechanism of a bacterial homologue of glutamate transporters, Nature, 462, 880, 10.1038/nature08616
Akyuz, 2015, Transport domain unlocking sets the uptake rate of an aspartate transporter, Nature, 518, 68, 10.1038/nature14158
Grewer, 2005, Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other, Biochemistry, 44, 11913, 10.1021/bi050987n
Koch, 2007, The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits, J. Neurosci., 27, 2943, 10.1523/JNEUROSCI.0118-07.2007
Torres-Salazar, 2006, Intersubunit interactions in EAAT4 glutamate transporters, J. Neurosci., 26, 7513, 10.1523/JNEUROSCI.4545-05.2006
Zhao, 2011, Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue, Nature, 474, 109, 10.1038/nature09971
Zhao, 2010, Single-molecule dynamics of gating in a neurotransmitter transporter homologue, Nature, 465, 188, 10.1038/nature09057
Wriggers, 2009, Automated event detection and activity monitoring in long molecular dynamics simulations, J. Chem. Theory Comput., 5, 2595, 10.1021/ct900229u
Stolzenberg, 2015, Mechanism of the association between Na+ binding and conformations at the intracellular gate in neurotransmitter:sodium symporters, J. Biol. Chem., 290, 13992, 10.1074/jbc.M114.625343
McDonald, 1994, Satisfying hydrogen bonding potential in proteins, J. Mol. Biol., 238, 777, 10.1006/jmbi.1994.1334
Janin, 1995, Protein–protein interaction at crystal contacts, Proteins, 23, 580, 10.1002/prot.340230413
Jones, 1996, Principles of protein–protein interactions, Proc. Natl. Acad. Sci. U. S. A., 93, 13, 10.1073/pnas.93.1.13
del Sol, 2006, Residues crucial for maintaining short paths in network communication mediate signaling in proteins, Mol. Syst. Biol., 2, 0019
Amitai, 2004, Network analysis of protein structures identifies functional residues, J. Mol. Biol., 344, 1135, 10.1016/j.jmb.2004.10.055
De Ruvo, 2012, Shedding light on protein-ligand binding by graph theory: the topological nature of allostery, Biophys. Chem., 165-166, 21, 10.1016/j.bpc.2012.03.001
Bode, 2007, Network analysis of protein dynamics, FEBS Lett., 581, 2776, 10.1016/j.febslet.2007.05.021
Doncheva, 2011, Analyzing and visualizing residue networks of protein structures, Trends Biochem. Sci., 36, 179, 10.1016/j.tibs.2011.01.002
Bahar, 2010, Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins, Chem. Rev., 110, 1463, 10.1021/cr900095e
Tirion, 1996, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Phys. Rev. Lett., 77, 1905, 10.1103/PhysRevLett.77.1905
Bahar, 1997, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold. Des., 2, 173, 10.1016/S1359-0278(97)00024-2
Cui, 2005
Tama, 2000, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins, 41, 1, 10.1002/1097-0134(20001001)41:1<1::AID-PROT10>3.0.CO;2-P
Li, 2002, A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase, Biophys. J., 83, 2457, 10.1016/S0006-3495(02)75257-0
Yang, 2006, oGNM: online computation of structural dynamics using the Gaussian Network Model, Nucleic Acids Res., 34, W24, 10.1093/nar/gkl084
Kolan, 2014, Elastic network normal mode dynamics reveal the GPCR activation mechanism, Proteins, 82, 579, 10.1002/prot.24426
Kniazeff, 2008, An intracellular interaction network regulates conformational transitions in the dopamine transporter, J. Biol. Chem., 283, 17691, 10.1074/jbc.M800475200
Stolzenberg, 2012, Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh, J. Phys. Chem. B, 116, 5372, 10.1021/jp301726s
Lezon, 2012, Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh, Biophys. J., 102, 1331, 10.1016/j.bpj.2012.02.028
Amadei, 1993, Essential dynamics of proteins, Proteins, 17, 412, 10.1002/prot.340170408
Brooks, 1983, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4, 187, 10.1002/jcc.540040211
Shaw, 2010, Atomic-level characterization of the structural dynamics of proteins, Science, 330, 341, 10.1126/science.1187409
Zhao, 2012, Ion-controlled conformational dynamics in the outward-open transition from an occluded state of LeuT, Biophys. J., 103, 878, 10.1016/j.bpj.2012.07.044
Michino, 2015, Structural basis for Na(+)-sensitivity in dopamine D2 and D3 receptors, Chem. Commun. (Camb), 51, 8618, 10.1039/C5CC02204E
Kong, 2007, The signaling pathway of rhodopsin, Structure, 15, 611, 10.1016/j.str.2007.04.002
Sethi, 2009, Dynamical networks in tRNA:protein complexes, Proc. Natl. Acad. Sci. U. S. A., 106, 6620, 10.1073/pnas.0810961106
Pasi, 2012, xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures, J. Chem. Inf. Model., 52, 1865, 10.1021/ci300213c
Pandini, 2012, Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 26, 868
LeVine, 2014, NbIT—a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003603
Farabella, 2014, Allosteric signalling in the outer membrane translocation domain of PapC usher, Elife, 3
Tiberti, 2014, PyInteraph: a framework for the analysis of interaction networks in structural ensembles of proteins, J. Chem. Inf. Model., 54, 1537, 10.1021/ci400639r
Stolzenberg, 2014
Andricioaei, 2001, On the calculation of entropy from covariance matrices of the atomic fluctuations, J. Chem. Phys., 115, 6289, 10.1063/1.1401821
Ichiye, 1991, Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins, 11, 205, 10.1002/prot.340110305
Van Aalten, 1997, A comparison of techniques for calculating protein essential dynamics, J. Comput. Chem., 18, 169, 10.1002/(SICI)1096-987X(19970130)18:2<169::AID-JCC3>3.0.CO;2-T
Eargle, 2012, NetworkView: 3D display and analysis of protein.RNA interaction networks, Bioinformatics, 28, 3000, 10.1093/bioinformatics/bts546
Vanwart, 2012, Exploring residue component contributions to dynamical network models of allostery, J. Chem. Theory Comput., 8, 2949, 10.1021/ct300377a
Van Wart, 2014, Weighted implementation of suboptimal paths (WISP): an optimized algorithm and tool for dynamical network analysis, J. Chem. Theory Comput., 10, 511, 10.1021/ct4008603
Newman, 2004, Finding and evaluating community structure in networks, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 69, 026113, 10.1103/PhysRevE.69.026113
Shannon, 1948, A mathematical theory of communication, Bell Syst. Tech. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x
McClendon, 2009, Quantifying correlations between allosteric sites in thermodynamic ensembles, J. Chem. Theory Comput., 5, 2486, 10.1021/ct9001812
Dubay, 2011, Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002168
Lange, 2006, Generalized correlation for biomolecular dynamics, Proteins, 62, 1053, 10.1002/prot.20784
Gasper, 2012, Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities, Proc. Natl. Acad. Sci. U. S. A., 109, 21216, 10.1073/pnas.1218414109
Rivalta, 2012, Allosteric pathways in imidazole glycerol phosphate synthase, Proc. Natl. Acad. Sci. U. S. A., 109, E1428, 10.1073/pnas.1120536109
Matsuda, 2000, Physical nature of higher-order mutual information: intrinsic correlations and frustration, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 62, 3096
Khelashvili, 2015, Spontaneous inward opening of the dopamine transporter is triggered by PIP-regulated dynamics of the N-terminus, ACS Chem. Neurosci., 10.1021/acschemneuro.5b00179
LeVine, 2014, N-body information theory (NbIT) analysis of rigid-body dynamics in intracellular Loop 2 of the 5-HT2A receptor
Ku, 1969, Notes on the use of propagation of error formulas, 331
Grossfield, 2009, Quantifying uncertainty and sampling quality in biomolecular simulations, Annu. Rep. Comput. Chem., 5, 23, 10.1016/S1574-1400(09)00502-7
Sim, 2012, Sampling and statistics in biomolecular simulations, AIP Conf. Proc., 1456, 173, 10.1063/1.4730657
Claxton, 2010, Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters, Nat. Struct. Mol. Biol., 17, 822, 10.1038/nsmb.1854
Shi, 2008, The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site, Mol. Cell, 30, 667, 10.1016/j.molcel.2008.05.008
Boudker, 2007, Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter, Nature, 445, 387, 10.1038/nature05455
Seal, 2000, A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines, Neuron, 25, 695, 10.1016/S0896-6273(00)81071-5
Verdon, 2012, Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog, Nat. Struct. Mol. Biol., 19, 355, 10.1038/nsmb.2233
Michino, 2015, What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands?, Pharmacol. Rev., 67, 198, 10.1124/pr.114.009944
Rasmussen, 2011, Crystal structure of the beta2 adrenergic receptor-Gs protein complex, Nature, 477, 549, 10.1038/nature10361
Rasmussen, 2007, Crystal structure of the human beta2 adrenergic G-protein-coupled receptor, Nature, 450, 383, 10.1038/nature06325
Wootten, 2013, Emerging paradigms in GPCR allostery: implications for drug discovery, Nat. Rev. Drug Discov., 12, 630, 10.1038/nrd4052
Shi, 2006, A role for information collection, management, and integration in structure–function studies of G-protein coupled receptors, Curr. Pharm. Des., 12, 1771, 10.2174/138161206776873707
Keov, 2011, Allosteric modulation of G protein-coupled receptors: a pharmacological perspective, Neuropharmacology, 60, 24, 10.1016/j.neuropharm.2010.07.010
Ferre, 2014, G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives, Pharmacol. Rev., 66, 413, 10.1124/pr.113.008052
Lane, 2014, A new mechanism of allostery in a G protein-coupled receptor dimer, Nat. Chem. Biol., 10, 745, 10.1038/nchembio.1593
Suel, 2003, Evolutionarily conserved networks of residues mediate allosteric communication in proteins, Nat. Struct. Biol., 10, 59, 10.1038/nsb881
Lockless, 1999, Evolutionarily conserved pathways of energetic connectivity in protein families, Science, 286, 295, 10.1126/science.286.5438.295
Rasmussen, 2011, Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor, Nature, 469, 175, 10.1038/nature09648
Dror, 2011, Activation mechanism of the beta2-adrenergic receptor, Proc. Natl. Acad. Sci. U. S. A., 108, 18684, 10.1073/pnas.1110499108
Miao, 2013, Activation and dynamic network of the M2 muscarinic receptor, Proc. Natl. Acad. Sci. U. S. A., 110, 10982, 10.1073/pnas.1309755110
Perez-Aguilar, 2014, A functional selectivity mechanism at the serotonin-2 A GPCR involves ligand-dependent conformations of intracellular loop 2, J. Am. Chem. Soc., 136, 16044, 10.1021/ja508394x
Angelova, 2011, Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor, Cell. Mol. Life Sci., 68, 1227, 10.1007/s00018-010-0519-z
Fanelli, 2011, Dimerization and ligand binding affect the structure network of A(2 A) adenosine receptor, Biochim. Biophys. Acta, 1808, 1256, 10.1016/j.bbamem.2010.08.006
Fanelli, 2013, Network analysis to uncover the structural communication in GPCRs, Methods Cell Biol., 117, 43, 10.1016/B978-0-12-408143-7.00003-7
Katritch, 2014, Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233, 10.1016/j.tibs.2014.03.002
Hanson, 2008, A specific cholesterol binding site is established by the 2.8A structure of the human beta2-adrenergic receptor, Structure, 16, 897, 10.1016/j.str.2008.05.001
Kruse, 2013, Activation and allosteric modulation of a muscarinic acetylcholine receptor, Nature, 504, 101, 10.1038/nature12735
Dror, 2013, Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs, Nature, 503, 295, 10.1038/nature12595
Selent, 2010, Induced effects of sodium ions on dopaminergic G-protein coupled receptors, PLoS Comput. Biol., 6, 10.1371/journal.pcbi.1000884
Shang, 2014, Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions, Biochemistry, 53, 5140, 10.1021/bi5006915
Massink, 2015, Sodium ion binding pocket mutations and adenosine A2A receptor function, Mol. Pharmacol., 87, 305, 10.1124/mol.114.095737
Miao, 2015, Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor, Biophys. J., 108, 1796, 10.1016/j.bpj.2015.03.003
Urban, 2007, Functional selectivity and classical concepts of quantitative pharmacology, J. Pharmacol. Exp. Ther., 320, 1, 10.1124/jpet.106.104463
Shonberg, 2014, Biased agonism at G protein-coupled receptors: the promise and the challenges—a medicinal chemistry perspective, Med. Res. Rev., 34, 1286, 10.1002/med.21318
LeVine, 2015, AIM for allostery: using the Ising model to understand information processing and transmission in allosteric biomolecular systems, Entropy, 17, 2895, 10.3390/e17052895
Kang, 2015, Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser, Nature, 523, 561, 10.1038/nature14656