Computational approaches to detect allosteric pathways in transmembrane molecular machines

Biochimica et Biophysica Acta (BBA) - Biomembranes - Tập 1858 - Trang 1652-1662 - 2016
Sebastian Stolzenberg1,2,3, Mayako Michino4, Michael V. LeVine2, Harel Weinstein2,5, Lei Shi2,4
1Computational Molecular Biology Group, Institute for Mathematics, Arnimallee 6, 14195, Berlin, Germany
2Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, USA
3Department of Physics, Cornell University, Ithaca, NY 14850, USA
4Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse — Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
5Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY 10065, USA

Tài liệu tham khảo

Motlagh, 2014, The ensemble nature of allostery, Nature, 508, 331, 10.1038/nature13001 Nussinov, 2015, Allostery without a conformational change? Revisiting the paradigm, Curr. Opin. Struct. Biol., 30, 17, 10.1016/j.sbi.2014.11.005 Gunasekaran, 2004, Is allostery an intrinsic property of all dynamic proteins?, Proteins, 57, 433, 10.1002/prot.20232 LeVine, 2016, Allosteric mechanisms of molecular machines at the membrane: transport by sodium-coupled symporters, Chem. Rev., 10.1021/acs.chemrev.5b00627 Monod, 1965, On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88, 10.1016/S0022-2836(65)80285-6 Koshland, 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry, 5, 365, 10.1021/bi00865a047 Bray, 2004, Conformational spread: the propagation of allosteric states in large multiprotein complexes, Annu. Rev. Biophys. Biomol. Struct., 33, 53, 10.1146/annurev.biophys.33.110502.132703 Swain, 2006, The changing landscape of protein allostery, Curr. Opin. Struct. Biol., 16, 102, 10.1016/j.sbi.2006.01.003 Jardetzky, 1966, Simple allosteric model for membrane pumps, Nature, 211, 969, 10.1038/211969a0 Krishnamurthy, 2012, X-ray structures of LeuT in substrate-free outward-open and apo inward-open states, Nature, 481, 469, 10.1038/nature10737 Singh, 2008, A competitive inhibitor traps LeuT in an open-to-out conformation, Science, 322, 1655, 10.1126/science.1166777 Yamashita, 2005, Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters, Nature, 437, 215, 10.1038/nature03978 Krishnamurthy, 2009, Unlocking the molecular secrets of sodium-coupled transporters, Nature, 459, 347, 10.1038/nature08143 Kristensen, 2011, SLC6 neurotransmitter transporters: structure, function, and regulation, Pharmacol. Rev., 63, 585, 10.1124/pr.108.000869 Shi, 2012, 9.7 molecular modeling and simulations of transporter proteins – the transmembrane allosteric machinery, 105 Yernool, 2004, Structure of a glutamate transporter homologue from Pyrococcus horikoshii, Nature, 431, 811, 10.1038/nature03018 Reyes, 2009, Transport mechanism of a bacterial homologue of glutamate transporters, Nature, 462, 880, 10.1038/nature08616 Akyuz, 2015, Transport domain unlocking sets the uptake rate of an aspartate transporter, Nature, 518, 68, 10.1038/nature14158 Grewer, 2005, Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other, Biochemistry, 44, 11913, 10.1021/bi050987n Koch, 2007, The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits, J. Neurosci., 27, 2943, 10.1523/JNEUROSCI.0118-07.2007 Torres-Salazar, 2006, Intersubunit interactions in EAAT4 glutamate transporters, J. Neurosci., 26, 7513, 10.1523/JNEUROSCI.4545-05.2006 Zhao, 2011, Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue, Nature, 474, 109, 10.1038/nature09971 Zhao, 2010, Single-molecule dynamics of gating in a neurotransmitter transporter homologue, Nature, 465, 188, 10.1038/nature09057 Wriggers, 2009, Automated event detection and activity monitoring in long molecular dynamics simulations, J. Chem. Theory Comput., 5, 2595, 10.1021/ct900229u Stolzenberg, 2015, Mechanism of the association between Na+ binding and conformations at the intracellular gate in neurotransmitter:sodium symporters, J. Biol. Chem., 290, 13992, 10.1074/jbc.M114.625343 McDonald, 1994, Satisfying hydrogen bonding potential in proteins, J. Mol. Biol., 238, 777, 10.1006/jmbi.1994.1334 Janin, 1995, Protein–protein interaction at crystal contacts, Proteins, 23, 580, 10.1002/prot.340230413 Jones, 1996, Principles of protein–protein interactions, Proc. Natl. Acad. Sci. U. S. A., 93, 13, 10.1073/pnas.93.1.13 del Sol, 2006, Residues crucial for maintaining short paths in network communication mediate signaling in proteins, Mol. Syst. Biol., 2, 0019 Amitai, 2004, Network analysis of protein structures identifies functional residues, J. Mol. Biol., 344, 1135, 10.1016/j.jmb.2004.10.055 De Ruvo, 2012, Shedding light on protein-ligand binding by graph theory: the topological nature of allostery, Biophys. Chem., 165-166, 21, 10.1016/j.bpc.2012.03.001 Bode, 2007, Network analysis of protein dynamics, FEBS Lett., 581, 2776, 10.1016/j.febslet.2007.05.021 Doncheva, 2011, Analyzing and visualizing residue networks of protein structures, Trends Biochem. Sci., 36, 179, 10.1016/j.tibs.2011.01.002 Bahar, 2010, Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins, Chem. Rev., 110, 1463, 10.1021/cr900095e Tirion, 1996, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Phys. Rev. Lett., 77, 1905, 10.1103/PhysRevLett.77.1905 Bahar, 1997, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold. Des., 2, 173, 10.1016/S1359-0278(97)00024-2 Cui, 2005 Tama, 2000, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins, 41, 1, 10.1002/1097-0134(20001001)41:1<1::AID-PROT10>3.0.CO;2-P Li, 2002, A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase, Biophys. J., 83, 2457, 10.1016/S0006-3495(02)75257-0 Yang, 2006, oGNM: online computation of structural dynamics using the Gaussian Network Model, Nucleic Acids Res., 34, W24, 10.1093/nar/gkl084 Kolan, 2014, Elastic network normal mode dynamics reveal the GPCR activation mechanism, Proteins, 82, 579, 10.1002/prot.24426 Kniazeff, 2008, An intracellular interaction network regulates conformational transitions in the dopamine transporter, J. Biol. Chem., 283, 17691, 10.1074/jbc.M800475200 Stolzenberg, 2012, Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh, J. Phys. Chem. B, 116, 5372, 10.1021/jp301726s Lezon, 2012, Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh, Biophys. J., 102, 1331, 10.1016/j.bpj.2012.02.028 Amadei, 1993, Essential dynamics of proteins, Proteins, 17, 412, 10.1002/prot.340170408 Brooks, 1983, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4, 187, 10.1002/jcc.540040211 Shaw, 2010, Atomic-level characterization of the structural dynamics of proteins, Science, 330, 341, 10.1126/science.1187409 Zhao, 2012, Ion-controlled conformational dynamics in the outward-open transition from an occluded state of LeuT, Biophys. J., 103, 878, 10.1016/j.bpj.2012.07.044 Michino, 2015, Structural basis for Na(+)-sensitivity in dopamine D2 and D3 receptors, Chem. Commun. (Camb), 51, 8618, 10.1039/C5CC02204E Kong, 2007, The signaling pathway of rhodopsin, Structure, 15, 611, 10.1016/j.str.2007.04.002 Sethi, 2009, Dynamical networks in tRNA:protein complexes, Proc. Natl. Acad. Sci. U. S. A., 106, 6620, 10.1073/pnas.0810961106 Pasi, 2012, xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures, J. Chem. Inf. Model., 52, 1865, 10.1021/ci300213c Pandini, 2012, Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 26, 868 LeVine, 2014, NbIT—a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003603 Farabella, 2014, Allosteric signalling in the outer membrane translocation domain of PapC usher, Elife, 3 Tiberti, 2014, PyInteraph: a framework for the analysis of interaction networks in structural ensembles of proteins, J. Chem. Inf. Model., 54, 1537, 10.1021/ci400639r Stolzenberg, 2014 Andricioaei, 2001, On the calculation of entropy from covariance matrices of the atomic fluctuations, J. Chem. Phys., 115, 6289, 10.1063/1.1401821 Ichiye, 1991, Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins, 11, 205, 10.1002/prot.340110305 Van Aalten, 1997, A comparison of techniques for calculating protein essential dynamics, J. Comput. Chem., 18, 169, 10.1002/(SICI)1096-987X(19970130)18:2<169::AID-JCC3>3.0.CO;2-T Eargle, 2012, NetworkView: 3D display and analysis of protein.RNA interaction networks, Bioinformatics, 28, 3000, 10.1093/bioinformatics/bts546 Vanwart, 2012, Exploring residue component contributions to dynamical network models of allostery, J. Chem. Theory Comput., 8, 2949, 10.1021/ct300377a Van Wart, 2014, Weighted implementation of suboptimal paths (WISP): an optimized algorithm and tool for dynamical network analysis, J. Chem. Theory Comput., 10, 511, 10.1021/ct4008603 Newman, 2004, Finding and evaluating community structure in networks, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 69, 026113, 10.1103/PhysRevE.69.026113 Shannon, 1948, A mathematical theory of communication, Bell Syst. Tech. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x McClendon, 2009, Quantifying correlations between allosteric sites in thermodynamic ensembles, J. Chem. Theory Comput., 5, 2486, 10.1021/ct9001812 Dubay, 2011, Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002168 Lange, 2006, Generalized correlation for biomolecular dynamics, Proteins, 62, 1053, 10.1002/prot.20784 Gasper, 2012, Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities, Proc. Natl. Acad. Sci. U. S. A., 109, 21216, 10.1073/pnas.1218414109 Rivalta, 2012, Allosteric pathways in imidazole glycerol phosphate synthase, Proc. Natl. Acad. Sci. U. S. A., 109, E1428, 10.1073/pnas.1120536109 Matsuda, 2000, Physical nature of higher-order mutual information: intrinsic correlations and frustration, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 62, 3096 Khelashvili, 2015, Spontaneous inward opening of the dopamine transporter is triggered by PIP-regulated dynamics of the N-terminus, ACS Chem. Neurosci., 10.1021/acschemneuro.5b00179 LeVine, 2014, N-body information theory (NbIT) analysis of rigid-body dynamics in intracellular Loop 2 of the 5-HT2A receptor Ku, 1969, Notes on the use of propagation of error formulas, 331 Grossfield, 2009, Quantifying uncertainty and sampling quality in biomolecular simulations, Annu. Rep. Comput. Chem., 5, 23, 10.1016/S1574-1400(09)00502-7 Sim, 2012, Sampling and statistics in biomolecular simulations, AIP Conf. Proc., 1456, 173, 10.1063/1.4730657 Claxton, 2010, Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters, Nat. Struct. Mol. Biol., 17, 822, 10.1038/nsmb.1854 Shi, 2008, The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site, Mol. Cell, 30, 667, 10.1016/j.molcel.2008.05.008 Boudker, 2007, Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter, Nature, 445, 387, 10.1038/nature05455 Seal, 2000, A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines, Neuron, 25, 695, 10.1016/S0896-6273(00)81071-5 Verdon, 2012, Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog, Nat. Struct. Mol. Biol., 19, 355, 10.1038/nsmb.2233 Michino, 2015, What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands?, Pharmacol. Rev., 67, 198, 10.1124/pr.114.009944 Rasmussen, 2011, Crystal structure of the beta2 adrenergic receptor-Gs protein complex, Nature, 477, 549, 10.1038/nature10361 Rasmussen, 2007, Crystal structure of the human beta2 adrenergic G-protein-coupled receptor, Nature, 450, 383, 10.1038/nature06325 Wootten, 2013, Emerging paradigms in GPCR allostery: implications for drug discovery, Nat. Rev. Drug Discov., 12, 630, 10.1038/nrd4052 Shi, 2006, A role for information collection, management, and integration in structure–function studies of G-protein coupled receptors, Curr. Pharm. Des., 12, 1771, 10.2174/138161206776873707 Keov, 2011, Allosteric modulation of G protein-coupled receptors: a pharmacological perspective, Neuropharmacology, 60, 24, 10.1016/j.neuropharm.2010.07.010 Ferre, 2014, G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives, Pharmacol. Rev., 66, 413, 10.1124/pr.113.008052 Lane, 2014, A new mechanism of allostery in a G protein-coupled receptor dimer, Nat. Chem. Biol., 10, 745, 10.1038/nchembio.1593 Suel, 2003, Evolutionarily conserved networks of residues mediate allosteric communication in proteins, Nat. Struct. Biol., 10, 59, 10.1038/nsb881 Lockless, 1999, Evolutionarily conserved pathways of energetic connectivity in protein families, Science, 286, 295, 10.1126/science.286.5438.295 Rasmussen, 2011, Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor, Nature, 469, 175, 10.1038/nature09648 Dror, 2011, Activation mechanism of the beta2-adrenergic receptor, Proc. Natl. Acad. Sci. U. S. A., 108, 18684, 10.1073/pnas.1110499108 Miao, 2013, Activation and dynamic network of the M2 muscarinic receptor, Proc. Natl. Acad. Sci. U. S. A., 110, 10982, 10.1073/pnas.1309755110 Perez-Aguilar, 2014, A functional selectivity mechanism at the serotonin-2 A GPCR involves ligand-dependent conformations of intracellular loop 2, J. Am. Chem. Soc., 136, 16044, 10.1021/ja508394x Angelova, 2011, Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor, Cell. Mol. Life Sci., 68, 1227, 10.1007/s00018-010-0519-z Fanelli, 2011, Dimerization and ligand binding affect the structure network of A(2 A) adenosine receptor, Biochim. Biophys. Acta, 1808, 1256, 10.1016/j.bbamem.2010.08.006 Fanelli, 2013, Network analysis to uncover the structural communication in GPCRs, Methods Cell Biol., 117, 43, 10.1016/B978-0-12-408143-7.00003-7 Katritch, 2014, Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233, 10.1016/j.tibs.2014.03.002 Hanson, 2008, A specific cholesterol binding site is established by the 2.8A structure of the human beta2-adrenergic receptor, Structure, 16, 897, 10.1016/j.str.2008.05.001 Kruse, 2013, Activation and allosteric modulation of a muscarinic acetylcholine receptor, Nature, 504, 101, 10.1038/nature12735 Dror, 2013, Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs, Nature, 503, 295, 10.1038/nature12595 Selent, 2010, Induced effects of sodium ions on dopaminergic G-protein coupled receptors, PLoS Comput. Biol., 6, 10.1371/journal.pcbi.1000884 Shang, 2014, Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions, Biochemistry, 53, 5140, 10.1021/bi5006915 Massink, 2015, Sodium ion binding pocket mutations and adenosine A2A receptor function, Mol. Pharmacol., 87, 305, 10.1124/mol.114.095737 Miao, 2015, Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor, Biophys. J., 108, 1796, 10.1016/j.bpj.2015.03.003 Urban, 2007, Functional selectivity and classical concepts of quantitative pharmacology, J. Pharmacol. Exp. Ther., 320, 1, 10.1124/jpet.106.104463 Shonberg, 2014, Biased agonism at G protein-coupled receptors: the promise and the challenges—a medicinal chemistry perspective, Med. Res. Rev., 34, 1286, 10.1002/med.21318 LeVine, 2015, AIM for allostery: using the Ising model to understand information processing and transmission in allosteric biomolecular systems, Entropy, 17, 2895, 10.3390/e17052895 Kang, 2015, Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser, Nature, 523, 561, 10.1038/nature14656