Computational Resource Demands of a Predictive Bayesian Brain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdelbar, A.M., & Hedetniemi, S.M. (1998). Approximating MAPs for belief networks is NP-hard and other theorems. Artificial Intelligence, 102, 21–38.
Adams, R., Shipp, S., Friston, K. (2013). Predictions not commands: active inference in the motor system. Brain Structure and Function, 218(3), 611–643.
Arora, S., & Barak, B. (2009). Complexity theory: a modern approach. Cambridge: Cambridge University Press.
Barlow, H.B. (1961). Possible principles underlying the transformation of sensory messages. In W.A. Rosenblith (Ed.) Sensory Communication, (Vol. 3 pp. 217–234). Cambridge,MA: MIT Press.
Bilmes, J. (2004). On virtual evidence and soft evidence in Bayesian networks. Tech. Rep UWEETR-2004-0016, University of Washington, Department of Electrical Engineering.
Blokpoel, M., Kwisthout, J., van Rooij, I. (2012). When can predictive brains be truly Bayesian? Frontiers in Theoretical and Philosophical Psychology, 3, 406.
Blokpoel, M., Kwisthout, J., van der Weide, T., Wareham, T., van Rooij, I. (2013). A computational-level explanation of the speed of goal inference. Journal of Mathematical Psychology, 57(3-4), 117–133.
Blokpoel, M., Wareham, H., Haselager, W., Toni, I., van Rooij, I. (2018). Deep analogical inference as the origin of hypotheses. Journal of Problem Solving, 11(1), 3.
Bodlaender, H.L. (1993). A tourist guide through treewidth. Acta Cybernetica, 11, 1–21.
Bossaerts, P., & Murawski, C. (2017). Computational complexity and human decision-making. Trends in Cognitive Sciences, 21(12), 917–929.
Brown, H., & Friston, K. (2012). Free-energy and illusions: the cornsweet effect. Frontiers in Psychology, 3, 43.
Brown, H., Friston, K., Bestmann, S. (2011). Active inference, attention, and motor preparation. Frontiers in Psychology, 2(218), 1–9.
Bruineberg, J., Kiverstein, J., Rietveld, E. (2018). The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective. Synthese, 195(6), 2417–2444.
Buesing, L., Bill, J., Nessler, B., Maass, W. (2011). Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology, 7(11), e1002, 211.
Castillo, E., Gutiérrez, J., Hadi, A. (1997). Sensitivity analysis in discrete Bayesian networks. IEEE Transactions on Systems Man, and Cybernetics, 27, 412–423.
Chater, N., Tenenbaum, J., Yuille, A. (2006). Probabilistic models of cognition: conceptual foundations. Trends in Cognitive Sciences, 107, 287–201.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.
Clark, A. (2016). Surfing uncertainty: prediction action, and the embodied mind. Oxford: Oxford University Press.
Clementi, A., Rolim, J., Trevisan, L. (1998). Recent advances towards proving P=BPP. In E. Allender, A. Clementi, J. Rolim, L. Trevisan (Eds.) EATCS (p. 64).
Cooper, G.F. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42(2), 393–405.
Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141–153.
Den Ouden, H., Kok, P., De Lange, F. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3, e548.
Donselaar, N. (2018). Parameterized hardness of active inference. In Proceedings of the international conference on probabilistic graphical models, PMLR, (Vol. 72 pp. 109–120).
Edwards, M., Adams, R., Brown, H., Pare’/es, I., Friston, K. (2012). A bayesian account of ‘hysteria’. Brain, 135(11), 3495–512.
Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 590, 1–31.
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 350, 815–836.
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W. (2007). Variational free energy and the Laplace approximation. Neuroimage, 34, 220–234.
Friston, K., Adams, R., Perrinet, L., Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, e151.
Garey, M., & Johnson, D. (1979). Computers and intractability. A guide to the theory of NP-completeness. W.H Freeman and Co., San Francisco, CA.
Gill, J.T. (1977). Computational complexity of probabilistic Turing Machines. SIAM Journal of Computing 6(4), 675–695.
Goldreich, O. (2008). Computational complexity: a conceptual perspective. Cambridge: Cambridge University Press.
Griffiths, T., Kemp, C., Tenenbaum, J. (2008). Bayesian models of cognition. In R. Sun (Ed.) The Cambridge handbook of computational cognitive modeling (pp. 59–100): Cambridge University Press.
Griffiths, T., Chater, N., Kemp, C., Perfors, A., Tenenbaum, J. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in cognitive sciences, 14(8), 357–364.
Griffiths, T., Lieder, F., Goodman, N. (2015). Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Topics in Cognitive Science, 7, 217–229.
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.
Habenschuss, S., Jonke, Z., Maass, W. (2013). Stochastic computations in cortical microcircuit models. PLoS Computational Biology, 9(11), e1003, 037.
Hamming, R. (1950). Error detecting and error correcting codes. Bell System Technical Journal, 29(2), 147–160.
Hobson, J., & Friston, K. (2012). Waking and dreaming consciousness: Neurobiological and functional considerations. Progress in Neurobiology, 98(1), 82–98.
Hohwy, J., Roepstorff, A., Friston, K. (2008). Predictive coding explains binocular rivalry: an epistemological review. Cognition, 108(3), 687–701.
Horga, G., Schatz, K., Abi-Dargham, A., Peterson, B. (2014). Deficits in predictive coding underlie hallucinations in schizophrenia. The Journal of neuroscience, 34(24), 8072–8082.
Jeffrey, R. (1965). The logic of decision. New York: McGraw-Hill.
Jehee, J., & Ballard, D. (2009). Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Computational Biology, 5, 1–10.
Kant, I. (1999/1787). Critique of pure reason. The Cambridge edition of the Works of Immanuel Kant. Cambridge: Cambridge University Press.
Kiiveri, H., Speed, T.P., Carlin, J.B. (1984). Recursive causal models. Journal of the Australian Mathematical Society Series A Pure mathematics, 36(1), 30–52.
Kilner, J.M., Friston, K.J., Frith, C.D. (2007a). The mirror-neuron system: a Bayesian perspective. Neuroreport, 18, 619–623.
Kilner, J.M., Friston, K.J., Frith, C.D. (2007b). Predictive coding: an account of the mirror neuron system. Cognitive Process, 8, 159–166.
Knill, D., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neuroscience, 27(12), 712–719.
Kostopoulos, D. (1991). An algorithm for the computation of binary logarithms. IEEE Transactions on computers, 40(11), 1267–1270.
Kullback, S., & Leibler, R.A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22, 79–86.
Kwisthout, J. (2009). The computational complexity of probabilistic networks. PhD thesis Faculty of Science, Utrecht University, The Netherlands.
Kwisthout, J. (2011). Most probable explanations in Bayesian networks: complexity and tractability. International Journal of Approximate Reasoning, 52(9), 1452–1469.
Kwisthout, J. (2014). Minimizing relative entropy in hierarchical predictive coding. In L. van der Gaag, & A. Feelders (Eds.) Proceedings of PGM’14, LNCS, (Vol. 8754 pp. 254–270).
Kwisthout, J. (2015). Tree-width and the computational complexity of map approximations in Bayesian networks. Journal of Artificial Intelligence Research, 53, 699–720.
Kwisthout, J. (2018). Approximate inference in Bayesian networks: parameterized complexity results. International Journal of Approximate Reasoning, 93, 119–131.
Kwisthout, J., & van der Gaag, L. (2008). The computational complexity of sensitivity analysis and parameter tuning. In D. Chickering, & J. Halpern (Eds.) Proceedings of the 24th conference on uncertainty in artificial intelligence (pp. 349–356): AUAI Press.
Kwisthout, J., & van Rooij, I. (2013a). Bridging the gap between theory and practice of approximate Bayesian inference. Cognitive Systems Research, 24, 2–8.
Kwisthout, J., & van Rooij, I. (2013b). Predictive coding: intractability hurdles that are yet to overcome [abstract]. In M. Knauff, M. Pauen, N. Sebanz, I. Wachsmuth (Eds.) Proceedings of the 35th annual conference of the cognitive science society Austin, TX: Cognitive Science Society.
Kwisthout, J., Wareham, T., van Rooij, I. (2011). Bayesian intractability is not an ailment approximation can cure. Cognitive Science, 35(5), 779–784.
Kwisthout, J., Bekkering, H., van Rooij, I. (2017). To be precise, the details don’t matter: On predictive processing, precision, and level of detail of predictions. Brain and Cognition, 112(112), 84–91.
Lee, T.S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America America, 20(7), 1434–1448.
Lieder, F., & Griffiths, T.L. (2019). Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences. https://doi.org/10.1017/S0140525X1900061X .
Littman, M.L., Goldsmith, J., Mundhenk, M. (1998). The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research, 9, 1–36.
Maass, W. (2014). Noise as a resource for computation and learning in networks of spiking neurons. Proceedings of the IEEE, 102(5), 860–880.
Majithia, J.C., & Levan, D. (1973). A note on base-2 logarithm computations. Proceedings of the IEEE, 61 (10), 1519–1520.
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: Freeman.
Otworowska, M., Kwisthout, J., van Rooij, I. (2014). Counter-factual mathematics of counterfactual predictive models. Frontiers in Consciousness Research, 5, 801.
Papadimitriou, CH. (1994). Computational complexity. Reading: Addison-Wesley.
Park, J.D., & Darwiche, A. (2004). Complexity results and approximation settings for MAP explanations. Journal of Artificial Intelligence Research, 21, 101–133.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. Palo Alto: Morgan Kaufmann.
Pearl, J. (2000). Causality: models, reasoning and inference. Cambridge: MIT Press.
Pecevski, D., Bueling, L., Maass, W. (2011). Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. PLoS Computational Biology, 7(12), 1–25.
Pink-Hashkes, S., van Rooij, I., Kwisthout, J. (2017). Perception is in the details: a predictive coding account of the psychedelic phenomenon. In Proceedings of the 39th annual meeting of the cognitive science society (pp. 2907–2912).
Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature neuroscience, 2, 79–87.
Rothen, N., Seth, A., Ward, J. (2018). Synesthesia improves sensory memory, when perceptual awareness is high. Vision Research, 153, 1–6.
Seth, A. (2015). Presence, objecthood, and the phenomenology of predictive perception. Cognitive neuroscience, 6(2-3), 111–117.
Seth, A., & Tsakiris, M. (2018). Being a beast machine: the somatic basis of selfhood. Trends in Cognitive Sciences, 22(11), 969– 981.
Seth, A., Suzuki, K., Critchley, H. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, e395.
Shimony, S.E. (1994). Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68(2), 399–410.
Sterzer, P., Adams, R., Fletcher, P., Frith, C., Lawrie, S., Muckli, L., Petrovic, P., Uhlhaas, P., Voss, M., Corlett, P. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634–643.
Swanson, L. (2016). The predictive processing paradigm has roots in Kant. Frontiers in Systems Neuroscience, 10, 79.
Tenenbaum, J.B. (2011). How to grow a mind: statistics, structure, and abstraction. Science, 331, 1279–1285.
Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science, 22, 1–24.
Thornton, C. (2016). Predictive processing is Turing complete: a new view of computation in the brain.
Torán, J. (1991). Complexity classes defined by counting quantifiers. Journal of the ACM, 38(3), 752–773.
Tsotsos, J. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13, 423–469.
Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de Wit, L., Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649–675.
van Rooij, I., Blokpoel, M., Kwisthout, J., Wareham, T. (2019). Cognition and intractability: a guide to classical and parameterized complexity analysis. Cambridge: Cambridge University Press.
Vaseghi, S. (2000). Advanced digital signal processing and noise reduction, 2nd. New Jersey: Wiley.
von Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Leipzig: Leopold Voss.
Wagner, K.W. (1986). The complexity of combinatorial problems with succinct input representation. Acta Informatica, 23, 325–356.