Computational Design of Three-Dimensional Multi-Constituent Material Microstructure Sets with Prescribed Statistical Constituent and Geometric Attributes

Yaochi Wei1, Dan R. Olsen1, Christopher Miller1, Karla B. Wagner2, Amirreza Keyhani1, Naresh N. Thadhani1, Min Zhou1
1The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
2School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. Berbenni, V. Favier, M. Berveiller, Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plast. 23, 114–142 (2007). https://doi.org/10.1016/j.ijplas.2006.03.004

C.A. Tang, H. Liu, P.K.K. Lee, Y. Tsui, L.G. Tham, Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity. Int. J. Rock Mech. Min. 37, 555–569 (2000). https://doi.org/10.1016/S1365-1609(99)00121-5

Y. Wei, S. Kim, Y. Horie, M. Zhou, Quantification of probabilistic ignition thresholds of polymer-bonded explosives with microstructure defects. J. Appl. Phys. 124, 165110 (2018). https://doi.org/10.1063/1.5031845

O. Forsman, Undersökning av rymdstrukturen hos ett kolstå av hypereutectoid sammansättning. Jernkontorets Ann. 102, 1–30 (1918)

M. Hillert, The Formation of Pearlite (Decomposition of Austenite by Diffusional Process) (Interscience Publishers, New York, 1962)

A. Gurumurthy, A.M. Gokhale, A. Godha, M. Gonzales, Montage serial sectioning: some finer aspects of practice. Metallogr. Microstruct. Anal. 2, 364–371 (2013). https://doi.org/10.1007/s13632-013-0100-x

H. Singh, A.M. Gokhale, Visualization of three-dimensional microstructures. Mater. Charact. 54, 21–29 (2005). https://doi.org/10.1016/j.matchar.2004.10.002

V.W. Manner, J.D. Yeager, B.M. Patterson, D.J. Walters, J.A. Stull, N.L. Cordes, D.J. Luscher, K.C. Henderson, A.M. Schmalzer, B.C. Tappan, In situ imaging during compression of plastic bonded explosives for damage modeling. Materials 10, 1–14 (2017). https://doi.org/10.3390/ma10060638

E. Kaeshammer, P. Dokladal, F. Willot, S. Belon, L. Borne, Generation of virtual microstructures of energetic materials based on micro-computed tomography images analysis. Paper presented at 50th International Annual Conference of the Fraunhofer ICT, Karlsruhe, Germany, 2019

M. Ben Youssef, F. Lavergne, K. Sab, K. Miled, J. Neji, Upscaling the elastic stiffness of foam concrete as a three-phase composite material. Cement Concrete Res. 110, 13–23 (2018). https://doi.org/10.1016/j.cemconres.2018.04.021

A. du Plessis, B.J. Olawuyi, W.P. Boshoff, S.G. le Roux, Simple and fast porosity analysis of concrete using X-ray computed tomography. Mater. Struct. 49, 553–562 (2016). https://doi.org/10.1617/s11527-014-0519-9

W.J.M. Kort-Kamp, N.L. Cordes, A. Ionita, B.B. Glover, A.L.H. Duque, W.L. Perry, B.M. Patterson, D.A.R. Dalvit, D.S. Moore, Microscale electromagnetic heating in heterogeneous energetic materials based on X-ray computed tomography. Phys. Rev. Appl. 5, 044008 (2016). https://doi.org/10.1103/PhysRevApplied.5.044008

I.F. Cengiz, J.M. Oliveira, R.L. Reis, Micro-CT—a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater. Res. 22, 22–26 (2018). https://doi.org/10.1186/s40824-018-0136-8

V. Cnudde, A. Cwirzen, B. Masschaele, P.J.S. Jacobs, Porosity and microstructure characterization of building stones and concretes. Eng. Geol. 103, 76–83 (2009). https://doi.org/10.1016/j.enggeo.2008.06.014

R.M. Doherty, D.S. Watt, Relationship between RDX properties and sensitivity. Propell. Explos. Pyrot. 33, 4–13 (2008). https://doi.org/10.1002/prep.200800201

U. Teipel, Energetic Materials: Particle Processing and Characterization (Wiley, Weinheim, 2004)

Y. Wei, R. Ranjan, U. Roy, J.H. Shin, Integrated Lagrangian and Eulerian 3D microstructure-explicit simulations for predicting macroscopic probabilistic SDT thresholds of energetic materials. Comput. Mech. 64, 547–561 (2019). https://doi.org/10.1007/s00466-019-01729-9

J.L. Jordan, E.B. Herbold, G. Sutherland, A. Fraser, J. Borg, D.W. Richards, Shock equation of state of multi-constituent epoxy-metal particulate composites. J. Appl. Phys. 109, 013531 (2011). https://doi.org/10.1063/1.3531579

A. Barua, S. Kim, Y. Horie, M. Zhou, Prediction of probabilistic ignition behavior of polymer-bonded explosives from microstructural stochasticity. J. Appl. Phys. 113, 184907 (2013). https://doi.org/10.1063/1.4804251

Y. Li, M. Zhou, Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations. J. Mech. Phys. Solids 61, 472–488 (2013). https://doi.org/10.1016/j.jmps.2012.09.013

Y. Li, M. Zhou, Prediction of fracture toughness of ceramic composites as function of microstructure: II. Analytical model. J. Mech. Phys. Solids 61, 489–503 (2013). https://doi.org/10.1016/j.jmps.2012.09.011

S. Kim, A. Barua, Y. Horie, M. Zhou, Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity. J. Appl. Phys. 115, 174902 (2014). https://doi.org/10.1063/1.4874915

S. Kim, Y. Horie, M. Zhou, Ignition desensitization of PBX via aluminization. Metall. Mater. Trans. A 46, 4578–4586 (2015). https://doi.org/10.1007/s11661-014-2605-6

Y. Li, M. Zhou, Prediction of fracture toughness scatter of composite materials. Comp. Mater. Sci. 116, 44–51 (2016). https://doi.org/10.1016/j.commatsci.2015.09.061

S. Kim, C. Miller, Y. Horie, C. Molek, E. Welle, M. Zhou, Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under shock loading. J. Appl. Phys. 120, 115902 (2016). https://doi.org/10.1063/1.4962211

S. Kim, Y. Wei, Y. Horie, M. Zhou, Prediction of shock initiation thresholds and ignition probability of polymer-bonded explosives using mesoscale simulations. J. Mech. Phys. Solids 114, 97–116 (2018). https://doi.org/10.1016/j.jmps.2018.02.010

U. Roy, S. Kim, C. Miller, Y. Horie, M. Zhou, Computational study of ignition behavior and hotspot dynamics of a potential class of aluminized explosives. Model. Simul. Mater. Sci. 26, 085004 (2018). https://doi.org/10.1088/1361-651X/aae402

C. Miller, S. Kim, Y. Horie, M. Zhou, Ignition thresholds of aluminized HMX-based polymer-bonded explosives. AIP Adv. 9, 045103 (2019). https://doi.org/10.1063/1.5052632

C. Miller, D. Kittell, C. Yarrington, M. Zhou, Prediction of probabilistic detonation threshold via millimeter-scale microstructure-explicit and void-explicit simulations. Propell. Explos. Pyrot. 45, 1–17 (2020). https://doi.org/10.1002/prep.201900214

A. Keyhani, S. Kim, Y. Horie, M. Zhou, Energy dissipation in polymer-bonded explosives with various levels of constituent plasticity and internal friction. Comp. Mater. Sci. 159, 136–149 (2019). https://doi.org/10.1016/j.commatsci.2018.12.008

F. Lavergne, K. Sab, J. Sanahuja, M. Bornert, C. Toulemonde, Investigation of the effect of aggregates’ morphology on concrete creep properties by numerical simulations. Cement Concrete Res. 71, 14–28 (2015). https://doi.org/10.1016/j.cemconres.2015.01.003

J. Feder, Random sequential adsorption. J. Theor. Biol. 87, 237–254 (1980). https://doi.org/10.1016/0022-5193(80)90358-6

C.R. Siviour, P.R. Laity, W.G. Proud, J.E. Field, D. Porter, P.D. Church, P. Gould, W. Huntingdon-Thresher, High strain rate properties of a polymer-bonded sugar: their dependence on applied and internal constraints. Proc. R. Soc. Math. Phys. 464, 1229–1255 (2008). https://doi.org/10.1098/rspa.2007.0214

J.D. Yeager, A.L.H. Duque, M. Shorty, P.R. Bowden, J.A. Stull, Development of inert density mock materials for HMX. J. Energ. Mater. 36, 253–265 (2018). https://doi.org/10.1080/07370652.2017.1375049

A. Keyhani, R. Yang, M. Zhou, Novel capability for microscale in situ imaging of temperature and deformation fields under dynamic loading. Exp. Mech. 59, 775–790 (2019). https://doi.org/10.1007/s11340-019-00495-2

D.J. Benson, P. Conley, Eulerian finite-element simulations of experimentally acquired HMX microstructures. Model. Simul. Mater. Sci. Eng. 7, 333–354 (1999). https://doi.org/10.1088/0965-0393/7/3/304

E.M. Mas, B.E. Clements, A. Ionita, P. Peterson, Finite element method calculations on statistically consistent microstructures of PBX 9501. AIP Conf. Proc. 845, 487–490 (2006). https://doi.org/10.1063/1.2263366

H. Minkowski, Vorlumen und oberflache. Math. Ann. 57, 447–495 (1903). https://doi.org/10.1007/BF01445180

P. Maragos, Tutorial on advances in morphological image-processing and analysis. Opt. Eng. 26, 623–632 (1987). https://doi.org/10.1117/12.7974127

C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996). https://doi.org/10.1145/235815.235821

A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, D.G. Kendall, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000)

D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960). https://doi.org/10.1016/0022-5096(60)90013-2

A. Needleman, A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987). https://doi.org/10.1115/1.3173064

V. Tvergaard, J.W. Hutchinson, The relation between crack-growth resistance and fracture process parameters in elastic plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992). https://doi.org/10.1016/0022-5096(92)90020-3

G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996). https://doi.org/10.1016/0020-7683(95)00255-3

J. Zhai, V. Tomar, M. Zhou, Micromechanical simulation of dynamic fracture using the cohesive finite element method. J. Eng. Mater. Technol. 126, 179–191 (2004). https://doi.org/10.1115/1.1647127

M. Zhou, A. Needleman, R.J. Clifton, Finite-element simulations of shear localization in plate impact. J. Mech. Phys. Solids 42, 423–458 (1994). https://doi.org/10.1016/0022-5096(94)90026-4

E.M. Mas, B.E. Clements, B. Blumenthal, C.M. Cady, G.T. Gray, C. Liu, A viscoelastic model for PBX binders. AIP Conf. Proc. 620, 661–664 (2002). https://doi.org/10.1063/1.1483625

P. Zhang, Microstructure generation of asphalt concrete and lattice modeling of its cracking behavior under low temperature. PhD Thesis, North Carolina State University, North Carolina, USA (2004)

L. T. de Souza, Investigation of aggregate angularity effects on asphalt concrete mixture performance using experimental and virtual asphalt samples. Master Thesis, University of Nebraska-Lincoln, Nebraska, USA (2009)

M.F. Ashby, The hardening of metals by non-deforming particles. Z. Metallkd. 55, 5–17 (1964)

E.E. Underwood, Quantitative Stereology (Addison-Wesley Educational Publishers Inc., Reading, 1970)

M. Zhou, R.J. Clifton, Dynamic ductile rupture under conditions of plane strain. Int. J. Impact Eng. 19, 189–206 (1997). https://doi.org/10.1016/S0734-743x(97)00028-6

Y.R. Kim, M. Haft-Javaherian, L.S. Castro, Two-dimensional virtual microstructure generation of particle-reinforced composites. J. Comput. Civ. Eng. 30, 04014112 (2016). https://doi.org/10.1061/(Asce)Cp.1943-5487.0000448

C. Miller, D. Olsen, Y. Wei, M. Zhou, Three-dimensional microstructure-explicit and void-explicit mesoscale simulations of detonation of HMX at millimeter sample size scale (under review) (2020)

J.M. Mcglaun, S.L. Thompson, M.G. Elrick, CTH—a three-dimensional shock-wave physics code. Int. J. Impact Eng. 10, 351–360 (1990). https://doi.org/10.1016/0734-743x(90)90071-3