Computation of connection coefficients and measure modifications for orthogonal polynomials
Tóm tắt
We observe that polynomial measure modifications for families of univariate orthogonal polynomials imply sparse connection coefficient relations. We therefore propose connecting L
2 expansion coefficients between a polynomial family and a modified family by a sparse transformation. Accuracy and conditioning of the connection and its inverse are explored. The connection and recurrence coefficients can simultaneously be obtained as the Cholesky decomposition of a matrix polynomial involving the Jacobi matrix; this property extends to continuous, non-polynomial measure modifications on finite intervals. We conclude with an example of a useful application to families of Jacobi polynomials with parameters (γ,δ) where the fast Fourier transform may be applied in order to obtain expansion coefficients whenever 2γ and 2δ are odd integers.
Tài liệu tham khảo
Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P., Lions, J. (eds.) Handbook of Numerical Analysis—Techniques of Scientific Computing, vol. 5. Elsevier, Amsterdam (1997), Chap. 2
Bueno, M.I., Dopico, F.M.: A more accurate algorithm for computing the Christoffel transformation. J. Comput. Appl. Math. 205(1), 567–582 (2007)
Das, S., Ghanem, R., Finette, S.: Polynomial chaos representation of spatio-temporal random fields from experimental measurements. J. Comput. Phys. 228(23), 8726–8751 (2009)
Debusschere, B.J., Najm, H.N., Matta, A., Knio, O.M., Ghanem, R.G., Maître, O.P.L.: Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation. Phys. Fluids 15, 2238 (2003)
Erdélyi, T., Magnus, A.P., Nevai, P.: Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials. SIAM J. Math. Anal. 25, 602–614 (1994)
Galant, D.: An implemention of Christoffel’s theorem in the theory of orthogonal polynomials. Math. Comput. 25(113), 111–113 (1971)
Galant, D.: Algebraic methods for modified orthogonal polynomials. Math. Comput. 59(200), 541–546 (1992)
Gautschi, W.: An algorithmic implementation of the generalized Christoffel theorem. In: Numerical Integration. International Series of Numerical Mathematics, vol. 57, pp. 89–106. Birkhauser, Basel (1982)
Gautschi, W.: The condition of Vandermonde-like matrices involving orthogonal polynomials. Linear Algebra Appl. 52–53, 293–300 (1983)
Gautschi, W.: The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. 13, 119–147 (2002)
Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, London (2004)
Ghanem, R., Spanos, P.D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57, 197 (1990)
Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29(4), 1420–1438 (2007)
Golub, G., Welsch, J.: Calculation of Gauss quadrature rules. Math. Comput. 23(106), 221–230 (1969)
Golub, G.H., Kautsky, J.: Calculation of Gauss quadratures with multiple free and fixed knots. Numer. Math. 41(2), 147–163 (1983)
Gottlieb, D., Shu, C.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)
Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011–1028 (2009)
Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics (2007)
Kautsky, J., Golub, G.H.: On the calculation of Jacobi matrices. Linear Algebra Appl. 52–53, 439–455 (1983)
Liu, M., Gao, Z., Hesthaven, J.S.: Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty. Appl. Numer. Math. 61(1), 24–37 (2011)
Maroni, P., da Rocha, Z.: Connection coefficients between orthogonal polynomials and the canonical sequence: an approach based on symbolic computation. Numer. Algorithms 47, 291–314 (2008)
Narayan, A.C., Hesthaven, J.S.: A generalization of the Wiener rational basis functions on infinite intervals: Part I—derivation and properties. Math. Comput. 80, 1557–1583 (2011)
Shen, J.: Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489 (1994)
Shen, J., Wang, L.: Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations. Comput. Methods Appl. Mech. Eng. 196(37–40), 3785–3797 (2007)
Soize, C., Ghanem, R.: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395 (2004)
Szegö, G.: Orthogonal Polynomials. AMS Colloquium Publications. Am. Math. Soc., Providence (1939)
Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)
Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)