Computability in Harmonic Analysis

Springer Science and Business Media LLC - Tập 22 - Trang 849-873 - 2021
Ilia Binder1, Adi Glucksam1, Cristobal Rojas2, Michael Yampolsky1
1Department of Mathematics, University of Toronto, Toronto, Canada
2Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

Tóm tắt

We study the question of constructive approximation of the harmonic measure $$\omega _x^\varOmega $$ of a bounded domain $$\varOmega $$ with respect to a point $$x\in \varOmega $$ . In particular, using a new notion of computable harmonic approximation, we show that for an arbitrary such $$\varOmega $$ , computability of the harmonic measure $$\omega ^\varOmega _x$$ for a single point $$x\in \varOmega $$ implies computability of $$\omega _y^\varOmega $$ for any $$y\in \varOmega $$ . This may require a different algorithm for different points y, which leads us to the construction of surprising natural examples of continuous functions that arise as solutions to a Dirichlet problem, whose values can be computed at any point, but cannot be computed with the use of the same algorithm on all of their domains. We further study the conditions under which the harmonic measure is computable uniformly, that is by a single algorithm, and characterize them for regular domains with computable boundaries.

Tài liệu tham khảo

I. Binder and M. Braverman. Derandomization of euclidean random walks. In APPROX-RANDOM, pages 353–365, 2007. I. Binder, M. Braverman, C. Rojas, and M. Yampolsky. Computability of Brolin-Lyubich measure. Comm. Math. Phys., 308(3):743–771, 2011. I. Binder, C. Rojas, and M. Yampolsky. Carathéodory convergence and harmonic measure. Potential Anal., 51:499–509, 2019. Ilia Binder, Cristobal Rojas, and Michael Yampolsky. Computable Carathéodory theory. Adv. Math., 265:280–312, 2014. E. Bishop and D. S. Bridges. Constructive Analysis. Springer-Verlag, Berlin, 1985. M Braverman and M. Yampolsky. Computability of Julia sets, volume 23 of Algorithms and Computation in Mathematics. Springer, 2008. C. Carathéodory. Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten. Math. Ann., 72(1):107–144, 1912. J.B. Garnett and D.E. Marshall. Harmonic Measure. Cambridge University Press, 2005. W. K. Hayman and P. B. Kennedy. Subharmonic functions. Vol. I. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. London Mathematical Society Monographs, No. 9. P. Koebe. Über eine neue Methode der konformen Abbildung und Uniformisierung. Nachr. Königl. Ges. Wiss. Göttingen, Math. Phys. Kl., pages 844–848, 1912. A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings, London Mathematical Society, pages 230–265, 1936. Ning Zhong. Derivatives of computable functions. Mathematical Logic Quarterly, 44(3):304–316, 1998.