Compressed channel estimation for RIS-assisted wireless systems: An efficient sparse recovery algorithm
Tài liệu tham khảo
Yang, 2019, 6G wireless communications: Vision and potential techniques, IEEE Netw., 33, 70, 10.1109/MNET.2019.1800418
Kaur, 2022, Sixth generation (6G) wireless technology: An overview, vision, challenges and use cases, 1
Jiang, 2021, The road towards 6G: A comprehensive survey, IEEE Open J. Commun. Soc., 2, 334, 10.1109/OJCOMS.2021.3057679
Dai, 2020, Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results, IEEE Access, 8, 45913, 10.1109/ACCESS.2020.2977772
Huang, 2019, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., 18, 4157, 10.1109/TWC.2019.2922609
Liu, 2021, Reconfigurable intelligent surfaces: Principles and opportunities, IEEE Commun. Surv. Tutor., 23, 1546, 10.1109/COMST.2021.3077737
Pan, 2021, Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions, IEEE Commun. Mag., 59, 14, 10.1109/MCOM.001.2001076
Yang, 2023, Active 3D double-RIS-aided multi-user communications: Two-timescale-based separate channel estimation via Bayesian learning, IEEE Trans. Commun., 71, 3605, 10.1109/TCOMM.2023.3265115
Di Renzo, 2020, Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison, IEEE Open J. Commun. Soc., 1, 798, 10.1109/OJCOMS.2020.3002955
Wang, 2020, Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems, IEEE Signal Process. Lett., 27, 905, 10.1109/LSP.2020.2998357
Peng, 2022, Two-stage channel estimation for semi-passive RIS-assisted millimeter wave systems, Sensors, 22, 5908, 10.3390/s22155908
Swindlehurst, 2022, Channel estimation with reconfigurable intelligent surfaces—A general framework, Proc. IEEE, 110, 1312, 10.1109/JPROC.2022.3170358
Zheng, 2022, A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications, IEEE Commun. Surv. Tutor., 24, 1035, 10.1109/COMST.2022.3155305
Wei, 2021, Channel estimation for RIS-empowered multi-user MISO wireless communications, IEEE Trans. Commun., 69, 4144, 10.1109/TCOMM.2021.3063236
Jian, 2022, Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques, Intell. Converg. Netw., 3, 1, 10.23919/ICN.2022.0005
You, 2022, Structured OMP for IRS-assisted mmwave channel estimation by exploiting angular spread, IEEE Trans. Veh. Technol., 71, 4444, 10.1109/TVT.2022.3142285
Berger, 2010, Application of compressive sensing to sparse channel estimation, IEEE Commun. Mag., 48, 164, 10.1109/MCOM.2010.5621984
Nouri, 2022, A low complexity burst channel estimation algorithm for FDD massive MIMO systems, Phys. Commun., 10.1016/j.phycom.2022.101760
Chen, 2019, 1468
Yang, 2023, Separate channel estimation with hybrid RIS-aided multi-user communications, IEEE Trans. Veh. Technol., 72, 1318, 10.1109/TVT.2022.3205370
Gao, 2015, Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO, IEEE Trans. Signal Process., 63, 6169, 10.1109/TSP.2015.2463260
Nouri, 2020, A compressed CSI estimation approach for FDD massive MIMO systems, 1
Azizipour, 2019, A burst-form CSI estimation approach for FDD massive MIMO systems, Signal Process., 162, 106, 10.1016/j.sigpro.2019.04.002
Rao, 2014, Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems, IEEE Trans. Signal Process., 62, 3261, 10.1109/TSP.2014.2324991
Lian, 2019, Exploiting dynamic sparsity for downlink FDD-massive MIMO channel tracking, IEEE Trans. Signal Process., 67, 2007, 10.1109/TSP.2019.2896179
Peng, 2022, Channel estimation for RIS-aided multi-user mmwave systems with uniform planar arrays, IEEE Trans. Commun., 70, 8105, 10.1109/TCOMM.2022.3214892
Cheng, 2017, Channel estimation for FDD multi-user massive MIMO: A variational Bayesian inference-based approach, IEEE Trans. Wireless Commun., 16, 7590, 10.1109/TWC.2017.2751046
Cheng, 2019, Adaptive grouping sparse Bayesian learning for channel estimation in non-stationary uplink massive MIMO systems, IEEE Trans. Wireless Commun., 18, 4184, 10.1109/TWC.2019.2922913
Taha, 2021, Enabling large intelligent surfaces with compressive sensing and deep learning, IEEE Access, 9, 44304, 10.1109/ACCESS.2021.3064073
Ma, 2020, Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO, IEEE Trans. Commun., 68, 2838, 10.1109/TCOMM.2020.2974457
Kulkarni, 2017, Low overhead architectures for OMP compressive sensing reconstruction algorithm, IEEE Trans. Circuits Syst. I. Regul. Pap., 64, 1468, 10.1109/TCSI.2017.2648854
Tropp, 2007, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, 53, 4655, 10.1109/TIT.2007.909108
Chen, 2019, 1468
Wei, 2021, Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on double-structured sparsity, IEEE Commun. Lett., 25, 1403, 10.1109/LCOMM.2021.3052787
Tropp, 2006, Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, Signal Process., 86, 589, 10.1016/j.sigpro.2005.05.031
Chen, 2006, Theoretical results on sparse representations of multiple-measurement vectors, IEEE Trans. Signal process., 54, 4634, 10.1109/TSP.2006.881263
Duarte, 2011, Structured compressed sensing: From theory to applications, IEEE Trans. Signal Process., 59, 4053, 10.1109/TSP.2011.2161982
Tropp, 2006, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, Signal Process., 86, 572, 10.1016/j.sigpro.2005.05.030
Bottou, 2002, Stochastic approximations and efficient learning
Barbotin, 2012, Estimation of sparse MIMO channels with common support, IEEE Trans. Commun., 60, 3705, 10.1109/TCOMM.2012.091112.110439
Babadi, 2008, Asymptotic achievability of the Cramér–Rao bound for noisy compressive sampling, IEEE Trans. Signal Process., 57, 1233, 10.1109/TSP.2008.2010379
Needell, 2009, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26, 301, 10.1016/j.acha.2008.07.002
Lian, 2018, Weighted LASSO for sparse recovery with statistical prior support information, IEEE Trans. Signal Process., 66, 1607, 10.1109/TSP.2018.2791949
Tibshirani, 1996, Regression shrinkage and selection via the LASSO, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267