Compressed channel estimation for RIS-assisted wireless systems: An efficient sparse recovery algorithm

Physical Communication - Tập 60 - Trang 102153 - 2023
Nima Nouri1, Mohammad Javad Azizipour2
1Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran

Tài liệu tham khảo

Yang, 2019, 6G wireless communications: Vision and potential techniques, IEEE Netw., 33, 70, 10.1109/MNET.2019.1800418 Kaur, 2022, Sixth generation (6G) wireless technology: An overview, vision, challenges and use cases, 1 Jiang, 2021, The road towards 6G: A comprehensive survey, IEEE Open J. Commun. Soc., 2, 334, 10.1109/OJCOMS.2021.3057679 Dai, 2020, Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results, IEEE Access, 8, 45913, 10.1109/ACCESS.2020.2977772 Huang, 2019, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., 18, 4157, 10.1109/TWC.2019.2922609 Liu, 2021, Reconfigurable intelligent surfaces: Principles and opportunities, IEEE Commun. Surv. Tutor., 23, 1546, 10.1109/COMST.2021.3077737 Pan, 2021, Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions, IEEE Commun. Mag., 59, 14, 10.1109/MCOM.001.2001076 Yang, 2023, Active 3D double-RIS-aided multi-user communications: Two-timescale-based separate channel estimation via Bayesian learning, IEEE Trans. Commun., 71, 3605, 10.1109/TCOMM.2023.3265115 Di Renzo, 2020, Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison, IEEE Open J. Commun. Soc., 1, 798, 10.1109/OJCOMS.2020.3002955 Wang, 2020, Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems, IEEE Signal Process. Lett., 27, 905, 10.1109/LSP.2020.2998357 Peng, 2022, Two-stage channel estimation for semi-passive RIS-assisted millimeter wave systems, Sensors, 22, 5908, 10.3390/s22155908 Swindlehurst, 2022, Channel estimation with reconfigurable intelligent surfaces—A general framework, Proc. IEEE, 110, 1312, 10.1109/JPROC.2022.3170358 Zheng, 2022, A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications, IEEE Commun. Surv. Tutor., 24, 1035, 10.1109/COMST.2022.3155305 Wei, 2021, Channel estimation for RIS-empowered multi-user MISO wireless communications, IEEE Trans. Commun., 69, 4144, 10.1109/TCOMM.2021.3063236 Jian, 2022, Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques, Intell. Converg. Netw., 3, 1, 10.23919/ICN.2022.0005 You, 2022, Structured OMP for IRS-assisted mmwave channel estimation by exploiting angular spread, IEEE Trans. Veh. Technol., 71, 4444, 10.1109/TVT.2022.3142285 Berger, 2010, Application of compressive sensing to sparse channel estimation, IEEE Commun. Mag., 48, 164, 10.1109/MCOM.2010.5621984 Nouri, 2022, A low complexity burst channel estimation algorithm for FDD massive MIMO systems, Phys. Commun., 10.1016/j.phycom.2022.101760 Chen, 2019, 1468 Yang, 2023, Separate channel estimation with hybrid RIS-aided multi-user communications, IEEE Trans. Veh. Technol., 72, 1318, 10.1109/TVT.2022.3205370 Gao, 2015, Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO, IEEE Trans. Signal Process., 63, 6169, 10.1109/TSP.2015.2463260 Nouri, 2020, A compressed CSI estimation approach for FDD massive MIMO systems, 1 Azizipour, 2019, A burst-form CSI estimation approach for FDD massive MIMO systems, Signal Process., 162, 106, 10.1016/j.sigpro.2019.04.002 Rao, 2014, Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems, IEEE Trans. Signal Process., 62, 3261, 10.1109/TSP.2014.2324991 Lian, 2019, Exploiting dynamic sparsity for downlink FDD-massive MIMO channel tracking, IEEE Trans. Signal Process., 67, 2007, 10.1109/TSP.2019.2896179 Peng, 2022, Channel estimation for RIS-aided multi-user mmwave systems with uniform planar arrays, IEEE Trans. Commun., 70, 8105, 10.1109/TCOMM.2022.3214892 Cheng, 2017, Channel estimation for FDD multi-user massive MIMO: A variational Bayesian inference-based approach, IEEE Trans. Wireless Commun., 16, 7590, 10.1109/TWC.2017.2751046 Cheng, 2019, Adaptive grouping sparse Bayesian learning for channel estimation in non-stationary uplink massive MIMO systems, IEEE Trans. Wireless Commun., 18, 4184, 10.1109/TWC.2019.2922913 Taha, 2021, Enabling large intelligent surfaces with compressive sensing and deep learning, IEEE Access, 9, 44304, 10.1109/ACCESS.2021.3064073 Ma, 2020, Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO, IEEE Trans. Commun., 68, 2838, 10.1109/TCOMM.2020.2974457 Kulkarni, 2017, Low overhead architectures for OMP compressive sensing reconstruction algorithm, IEEE Trans. Circuits Syst. I. Regul. Pap., 64, 1468, 10.1109/TCSI.2017.2648854 Tropp, 2007, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, 53, 4655, 10.1109/TIT.2007.909108 Chen, 2019, 1468 Wei, 2021, Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on double-structured sparsity, IEEE Commun. Lett., 25, 1403, 10.1109/LCOMM.2021.3052787 Tropp, 2006, Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, Signal Process., 86, 589, 10.1016/j.sigpro.2005.05.031 Chen, 2006, Theoretical results on sparse representations of multiple-measurement vectors, IEEE Trans. Signal process., 54, 4634, 10.1109/TSP.2006.881263 Duarte, 2011, Structured compressed sensing: From theory to applications, IEEE Trans. Signal Process., 59, 4053, 10.1109/TSP.2011.2161982 Tropp, 2006, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, Signal Process., 86, 572, 10.1016/j.sigpro.2005.05.030 Bottou, 2002, Stochastic approximations and efficient learning Barbotin, 2012, Estimation of sparse MIMO channels with common support, IEEE Trans. Commun., 60, 3705, 10.1109/TCOMM.2012.091112.110439 Babadi, 2008, Asymptotic achievability of the Cramér–Rao bound for noisy compressive sampling, IEEE Trans. Signal Process., 57, 1233, 10.1109/TSP.2008.2010379 Needell, 2009, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26, 301, 10.1016/j.acha.2008.07.002 Lian, 2018, Weighted LASSO for sparse recovery with statistical prior support information, IEEE Trans. Signal Process., 66, 1607, 10.1109/TSP.2018.2791949 Tibshirani, 1996, Regression shrinkage and selection via the LASSO, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267