Comprehensive theoretical study of the phenyl azide addition onto armchair (5, 5) single wall carbon nanotube

Computational and Theoretical Chemistry - Tập 1075 - Trang 38-46 - 2016
Adel Reisi-Vanani1, Masood Hamadanian1, Syamak Nasiri Kokhdan1
1Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran

Tài liệu tham khảo

Saito, 1997, Carbon nanotubes for next-generation electronics devices, Science, 278, 77, 10.1126/science.278.5335.77 Dresselhaus, 1996 Falvo, 1997, Bending and buckling of carbon nanotubes under large strain, Nature, 389, 582, 10.1038/39282 Odom, 1998, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 391, 62, 10.1038/34145 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Kuznetsova, 2000, Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase, J. Chem. Phys., 112, 9590, 10.1063/1.481575 Byl, 2003, Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: a vibrational spectroscopy study, J. Am. Chem. Soc., 125, 5889, 10.1021/ja020949g Ellison, 2004, Adsorption of NH3 and NO2 on single-walled carbon nanotubes, J. Phys. Chem. B, 108, 7938, 10.1021/jp049356d Yim, 2009, Ozone oxidation of single walled carbon nanotubes from density functional theory, J. Phys. Chem. C, 113, 17636, 10.1021/jp908089c Sun, 2002, Functionalized carbon nanotubes: properties and applications, Acc. Chem. Res., 35, 1096, 10.1021/ar010160v Niyogi, 2002, Chemistry of single-walled carbon nanotubes, Acc. Chem. Res., 35, 1105, 10.1021/ar010155r Banerjee, 2002, Functionalization of carbon nanotubes with a metal-containing molecular complex, Nano Lett., 2, 49, 10.1021/nl010070j Singh, 2009, Organic functionalisation and characterisation of single-walled carbon nanotubes, Chem. Soc. Rev., 38, 2214, 10.1039/b518111a Strano, 2003, Electronic structure control of single-walled carbon nanotube functionalization, Science, 301, 1519, 10.1126/science.1087691 Dyke, 2003, Solvent-free functionalization of carbon nanotubes, J. Am. Chem. Soc., 125, 1156, 10.1021/ja0289806 Khabashesku, 2002, Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res., 35, 1087, 10.1021/ar020146y Zhang, 2003, Effect of chemical oxidation on the structure of single-walled carbon nanotubes, J. Phys. Chem. B, 107, 3712, 10.1021/jp027500u Banerjee, 2002, Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis, J. Phys. Chem. B, 106, 12144, 10.1021/jp026304k Lu, 2002, Can the sidewalls of single-wall carbon nanotubes be ozonized?, J. Phys. Chem. B, 106, 2136, 10.1021/jp015537t Bianco, 2003, Can carbon nanotubes be considered useful tools for biological applications?, Adv. Mater., 15, 1765, 10.1002/adma.200301646 Yao, 2003, Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites, J. Am. Chem. Soc., 125, 16015, 10.1021/ja037564y Kar, 2004, A theoretical study of functionalized single-wall carbon nanotubes: ONIOM calculations, Chem. Phys. Lett., 392, 176, 10.1016/j.cplett.2004.05.015 Wang, 2004, Multi-walled carbon nanotube-based gas sensors for NH3 detection, Diam. Relat. Mater., 13, 1327, 10.1016/j.diamond.2003.11.070 Mahdavian, 2010, Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation, Microelectron. J., 41, 142, 10.1016/j.mejo.2010.01.011 Beheshtian, 2012, AlN nanotube as a potential electronic sensor for nitrogen dioxide, Microelectron. J., 43, 452, 10.1016/j.mejo.2012.04.002 Byl, 2003, Adsorption and dimerization of NO inside single-walled carbon nanotubes an infrared spectroscopic study, J. Phys. Chem. B, 107, 4277, 10.1021/jp022565i Yim, 2004, Vibrational behavior of adsorbed CO2 on single-walled carbon nanotubes, J. Chem. Phys., 120, 5377, 10.1063/1.1648017 Matranga, 2003, Trapped CO2 in carbon nanotube bundles, J. Phys. Chem. B, 107, 12930, 10.1021/jp0364654 Zhang, 2000, Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction, Chem. Phys. Lett., 331, 35, 10.1016/S0009-2614(00)01162-3 Yildirim, 2005, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium, Phys. Rev. Lett., 94, 175501, 10.1103/PhysRevLett.94.175501 Zhao, 2005, Hydrogen storage in novel organometallic buckyballs, Phys. Rev. Lett., 94, 155504, 10.1103/PhysRevLett.94.155504 Durgun, 2008, Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage, Phys. Rev. B, 77, 085405, 10.1103/PhysRevB.77.085405 Hamwi, 1997, Fluorination of carbon nanotubes, Carbon, 35, 723, 10.1016/S0008-6223(97)00013-4 Mickelson, 1999, Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents, J. Phys. Chem. B, 103, 4318, 10.1021/jp9845524 Bahr, 2001, Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode, J. Am. Chem. Soc., 123, 6536, 10.1021/ja010462s Ni, 2000, Chemical functionalization of carbon nanotubes through energetic radical collisions, Phys. Rev. B, 61, R16343, 10.1103/PhysRevB.61.R16343 Georgakilas, 2002, Organic functionalization of carbon nanotubes, J. Am. Chem. Soc., 124, 760, 10.1021/ja016954m Holzinger, 2001, Sidewall functionalization of carbon nanotubes, Angew. Chem. Int. Ed., 40, 4002, 10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8 Wanno, 2007, Addition of diazomethane to armchair single-walled carbon nanotubes and their reaction sequences: a computational study, Chem. Phys. Lett., 436, 218, 10.1016/j.cplett.2007.01.048 Li, 2010, A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes-azide polymer composites, Langmuir, 26, 7529, 10.1021/la904337z Pastine, 2008, A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides, J. Am. Chem. Soc., 130, 4238, 10.1021/ja8003446 Gao, 2010, Functionalization of carbon nanotubes and other nanocarbons by azide chemistry, Nano-Micro Lett., 2, 213, 10.1007/BF03353643 Liu, 2008, “Click” coupling between alkyne-decorated multiwalled carbon nanotubes and reactive PDMA-PNIPAM micelles, J. Polym. Sci., Part A: Polym. Chem., 46, 7187, 10.1002/pola.23026 Li, 2005, Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling, J. Am. Chem. Soc., 127, 14518, 10.1021/ja054958b Zhuang, 2006, Theoretical study on the reaction mechanism of bis-addition of methyl azide to C60, J. Mol. Struct. (Thoechem), 760, 45, 10.1016/j.theochem.2005.11.003 Romanova, 2002, Synthesis of a single isomer of the bis-adduct of isocyanurato-substituted azide with [60] fullerene, Russ. Chem. Bull., 51, 1491, 10.1023/A:1020967124217 Iglesias, 2000, New mono-and polyazafulleroids C60 (NR)n (n=1, 2, 4, 6) derived from a chiral azide containing N-and O-donor groups, and reactivity with [RhCl (CO)2]2, J. Organomet. Chem., 599, 8, 10.1016/S0022-328X(99)00657-9 Shiu, 1995, Bisazafulleroids, J. Chem. Soc., Chem. Commun., 1159, 10.1039/c39950001159 Kanakamma, 1998, Aza-aziridinofullerene: interconversion between Aza-aziridinofullerene and bisazafulleroid, Chem. – Eur. J., 4, 2037, 10.1002/(SICI)1521-3765(19981002)4:10<2037::AID-CHEM2037>3.0.CO;2-K Dong, 1995, Reaction of [60] fullerene with diethyl diazidomalonate: a doubly bridged fulleroid, J. Chem. Soc., Chem. Commun., 1725, 10.1039/c39950001725 Schick, 1996, Opening and closure of the fullerene cage in cis-bisimino adducts of C60: the influence of the addition pattern and the addend, Chem. – Eur. J., 2, 935, 10.1002/chem.19960020807 Lamparth, 1995, C59N+ and C69N+: isoelectronic heteroanalogues of C60 and C70, Angew. Chem., Int. Ed. Engl., 34, 2257, 10.1002/anie.199522571 Grösser, 1995, Ring expansion of the fullerene core by highly regioselective formation of diazafulleroids, Angew. Chem., Int. Ed. Engl., 34, 1343, 10.1002/anie.199513431 Dapprich, 1999, A new ONIOM implementation in Gaussian 98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives, J. Mol. Struct. (Thoechem.), 461, 1 Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913 Lee, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785 Gonzalez, 1990, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem., 94, 5523, 10.1021/j100377a021 Gonzalez, 1989, An improved algorithm for reaction path following, J. Chem. Phys., 90, 2154, 10.1063/1.456010 Frisch, 2004 Frisch, 2009, GaussView, 5 Huisgen, 1968, Cycloadditions – definition, classification, and characterization, Angew. Chem., Int. Ed. Engl., 7, 321, 10.1002/anie.196803211 Houk, 1995, Pericyclic reaction transition states: passions and punctilios, 1935–1995, Acc. Chem. Res., 28, 81, 10.1021/ar00050a004 Firestone, 1968, Mechanism of 1,3-dipolar cycloadditions, J. Org. Chem., 33, 2285, 10.1021/jo01270a023 Firestone, 1977, The diradical mechanism for 1,3-dipolar cycloadditions and related thermal pericyclic reactions, Tetrahedron, 33, 3009, 10.1016/0040-4020(77)80448-1 Huisgen, 1976, 1,3-Dipolar cycloadditions. 76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates, J. Org. Chem., 41, 403, 10.1021/jo00865a001 Komornicki, 1980, Reaction of acetylene with fulminic acid. The prototype 1,3-dipolar cycloaddition, J. Am. Chem. Soc., 102, 1763, 10.1021/ja00526a001 Lu, 2003, A theoretical exploration of the 1, 3-dipolar cycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes, J. Am. Chem. Soc., 125, 10459, 10.1021/ja034662a Pearson, 1997 Chattaraj, 2006, Electrophilicity index, Chem. Rev., 106, 2065, 10.1021/cr040109f Ayers, 2000, Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity”, Theoret. Chem. Acc., 103, 353, 10.1007/s002149900093 Yang, 1986, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, J. Am. Chem. Soc., 108, 5708, 10.1021/ja00279a008 Padmanabhan, 2007, Multiphilic descriptor for chemical reactivity and selectivity, J. Phys. Chem. A, 111, 9130, 10.1021/jp0718909