Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials

Granular Matter - Tập 12 Số 5 - Trang 527-541 - 2010
Abdalsalam Mohamed1, Marte Gutierrez1
1Division of Engineering, Colorado School of Mines, 1610 Illinois St., BB 269, Golden, CO, 80401, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Oda M., Konishi J., Nemat-Nasser S.: Experimental micromechanical evolution of strength of granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982)

Cundall, P.A.: A discrete numerical model for granular assemblies. In: Proceedings of ISRM Symposium, vol. 2, pp. 129–136. Nancy, France (1971)

Cundall P.A., Strack O.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

Bardet, J.P., Proubet, J.: Numerical simulation of localization in granular materials. In: Proceedings of EMD/ASCE Conference, pp. 1269–1273. Columbus, Ohio (1991)

Iwashita K., Oda M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Tech. 109, 192–205 (2000)

Hu N., Molinari J.F.: Shear bands in dense metallic granular materials. J. Mech. Phys. Solids 52, 499–531 (2004)

Gardiner B., Tordesillas A.: Micromechanics of shear bands. Int. J. Solids Struct. 41, 5885–5901 (2004)

Mandel, J.: Conditions de stabilité et postulat de Drucker. In: Proceedings of IUTAM Symposium on Rheology and Soil Mechanics, pp. 58–68 (1966)

Rudnicki J.W., Rice J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975)

Vardoulakis I.: Equilibrium theory of shear bands in plastic bodies. Mech. Res. Comm. 3, 209–214 (1976)

Newland P.L, Allely B.H.: Volume changes in drained triaxial tests on granular materials. Géotechnique 7(1), 17–34 (1957)

Rowe P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A 269, 500–527 (1962)

Schofield A., Wroth C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1967)

Mitchell J.K.: Fundamentals of Soil Behavior. Willey, New York (1976)

Jiang M.J., Haris D.A.: Novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

Wang, J.F., Gutierrez, M., Dove, J.E.: Effect of particle rolling resistance on interface shear behavior. In: Proceedings of 17th ASCE Engineering Mechanics Conference, pp. 56–63 (2004)

Oda M., Iwashita K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38(15), 1713–1740 (2000)

Bardet J.P., Proubet J.: The structure of shear bands in idealized granular materials. Appl. Mech. Rev. 45(3), 118–122 (1992)

Oda M., Kazama H., Konishi J.: Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28(1-4), 103–111 (1998)

Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(1-4), 465 (1998)

Tordesillas A., Shi J.: Micromechanical analysis of failure propagation in frictional granular materials. Int. J. Numer. Anal. Method Geomech. 33, 1737–1768 (2009)

Itasca Consulting Group.: Particle Flow Code in 2D (PFC-2D): User’s Manual, Version 4.0. Minneapolis, Minnesota (2008)

Bardet, J.P., Huang, Q.: Rotational stiffness of cylindrical particle contacts. In: Proceedings of Powders and Grains Conference, pp. 39–43 (1993)

Iwashita K., Oda M.J.: Rolling resistance at contacts in the simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

Sakaguchi H., Ozaki E., Igarashi T.: Plugging of the flow of granular materials during discharge from a silo. Int. J. Mod. Phys B 7(9–10), 1949–1963 (1993)

Jiang M.J., Yu H.-S., Harris D.: Kinematic variables bridging discrete and continuum granular mechanics. Mech. Res. Comm. 33, 651–666 (2006)

Jiang M.J., Leroueil S., Zhu H.-H., Yu H.-S., Konrad J.M.: Two-dimensional discrete element theory for rough particles. Int. J. Geomech. ASCE. 9(1), 20–33 (2009)

Jiang M.J., Yu H.-S., Harris D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Method Geomech. 30(7), 723–761 (2006)

Luding S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)

Bartels G., Unger T., Kadau D., Wolf D.E., Kertesz J.: The effect of contact torques on porosity of cohesive powders. Granul. Matter 7(3), 139–143 (2005)

Wang Y.C., Alonso-Marroquin F.: A finite deformation method for discrete modeling: particle rotation and parameter calibration. Granul. Matter 11(5), 331–343 (2009)

Ng T.T.: Input parameters of discrete element methods. J. Eng. Mech. 132(7), 723–729 (2006)

Bathurst B.J., Rothenburg L.: Note on a random isotropic granular materials with negative Poisson’s ratio. Int. J. Eng. Sci. 26(4), 373–383 (1988)

Tordesillas A.: Force chain buckles, unjamming transitions and shear banding in dense granular materials. Philos. Mag. 87, 4987–5016 (2007)

Wang Q., Lade P.V.: Shear banding in true triaxial tests and its effect on failure in sand. J. Eng. Mech. 127(8), 754–761 (2001)

Roscoe K.H.: The influence of strain in soil mechanics. Géotechnique 20(2), 129–170 (1970)

Arthur J., Dunstan T., Al-Ani Q., Assadi A.: Plastic deformation and failure in granular media. Geotechnique 27(1), 53–74 (1977)

Vardoulakis I.: Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Methods Geomech. 4(2), 103–119 (1980)

Muhlhaus H.B., Vardoulakis I.: The thickness of shear bands in granular materials. Geotechnique 37, 271–283 (1987)

Tordesillas A., Peters J.F., Muthuswamy M.: Role of particle rotations and rolling resistance in a semi-infinite particulate solid indented by a rigid flat punch. ANZIAM J. 46, 260–275 (2005)