Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu toàn diện về ứng suất dư của các vít lớn qua gia công phay cuồng phong
Tóm tắt
Nghiên cứu này đã khảo sát ảnh hưởng của các tham số cắt đối với ứng suất dư thu được trong quá trình phay cuồng phong thép AISI 52100. Các thí nghiệm đơn yếu tố và thí nghiệm Box-Behnken đã được thực hiện riêng biệt. Một mô hình dự đoán ứng suất dư đã được phát triển dựa trên phương pháp bề mặt phản ứng sử dụng dữ liệu thực nghiệm. Kết quả chỉ ra rằng độ sâu cắt là yếu tố chi phối, và sự tương tác giữa tốc độ cắt và số lượng dụng cụ là đáng kể. Mô hình đã phát triển có thể được sử dụng hiệu quả để dự đoán ứng suất dư bề mặt với độ tin cậy cao. Giá trị tối ưu và điều kiện cắt đã được xác nhận qua các thí nghiệm xác nhận.
Từ khóa
#ứng suất dư #gia công phay cuồng phong #thép AISI 52100 #phương pháp bề mặt phản ứng #thuật toán Box-BehnkenTài liệu tham khảo
Choi Y (2017) Influence of rake angle on surface integrity and fatigue performance of machined surfaces. Int J Fatigue 94(part_P1):81–88. https://doi.org/10.1016/j.ijfatigue.2016.09.013
Anthony XM, Manohar M, Madhukar PM, Jeyapandiarajan P (2017) Investigation of surface integrity during turning inconel 718. T Can Soc Mech Eng 41(3):387–394. https://doi.org/10.1139/tcsme-2017-1027
Dogra M, Sharma V, Sachdeva A, Suri NM (2012) Finish hard turning of continuous and interrupted surfaces with cubic boron nitride (CBN) and coated carbide tools. Mater Manuf Process 27:523–530. https://doi.org/10.1080/10426914.2011.593238
Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann 54:22–45. https://doi.org/10.1016/s0007-8506(07)60018-3
Song SQ, Zuo DW (2014) Modelling and simulation of whirling process based on equivalent cutting volume. Simul Model Pract TH 42(3):98–106. https://doi.org/10.1016/j.simpat.2013.12.011
Ni SY, Li Y, Deng S X (2012) Study on machining mechanism of internal whirling process for precise external thread and its tool profile design. J Mech Eng 48(7):193–198. https://doi.org/10.3901/JME.2012.07.193
Jawahir IS, Brinksmeier E, M’Saobi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60:603–626. https://doi.org/10.1016/j.cirp.2011.05.002
Wang W, Salvatore F, Rech J, Li J (2018) Comprehensive investigation on mechanisms of dry belt grinding on AISI52100 hardened steel. Tribol Int 121:310–320. https://doi.org/10.1016/j.triboint.2018.01.019
Zhang F, Duan C, Wang M, Sun W (2018) White and dark layer formation mechanism in hard cutting of AISI52100 steel. J Manuf Process 32:878–887. https://doi.org/10.1016/j.jmapro.2018.04.011
Arfaoui S, Zemzemi F, Tourki Z (2018) Relationship between cutting process parameters and white layer thickness in orthogonal cutting. Mater Manuf Process 33 (6):661–669. https://doi.org/10.1080/10426914.2017.1364849
Hamdan A, Sarhan AAD, Hamdi M (2012) An optimization method of the machining parameters in high speed machining of stainless steel using coated carbide tool for best surface finish. Int J Adv Manuf Technol 58(1-4):81–91. https://doi.org/10.1007/s00170-011-3392-5
Grove T, Tobias M (2017) Assessment of mechanical loads based on surface integrity analysis of machined components. CIRP Ann Manuf Technol 66:85–88. https://doi.org/10.1016/j.cirp.2017.04.030
Fabre D, Bonnet C, Rech J, Mabrouki T (2017) Optimization of surface roughness in broaching. CIRP J Manuf Sci Technol 18:115–127. https://doi.org/10.1016/j.cirpj.2016.10.006
Masmiati N, Sarhan AAD (2015) Optimizing cutting parameters in inclined end milling for minimum surface residual stress-Taguchi approach. Measurement 60:267–275. https://doi.org/10.1016/j.measurement.2014.10.002
Umbrello D, Outeiro JC, M’Saoubi R, Jayal AD, Jawahir IS (2010) A numerical model incorporating the microstructure alternation for predicting residual stresses in hard machining of AISI 52100 steel. CIRP Ann Manuf Technol 59:113–116. https://doi.org/10.1016/j.cirp.2010.03.061
Montagnat J, Sermesant M, Delingette H, Malandain G, Ayache N (2014) Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Appl Mech Rev 67(1):010801. https://doi.org/10.1115/1.4028160
Su JC, Young KA, Ma K, Srivatsa S, Morehouse JB (2013) Modeling of residual stresses in milling. Int J Adv Manuf Technol 65(5-8):717–733. https://doi.org/10.1007/s00170-012-4211-3
Qin MY, Ye BY, Jia X, He AD (2013) Experimental investigation of residual stress distribution in pre-stress cutting. Int J Adv Manuf Technol 65(1-4):355–361. https://doi.org/10.1007/s00170-012-4174-4
Salonitis K, Kolios A (2015) Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 steel. Int J Adv Manuf Technol 79(9-12):1443–1452. https://doi.org/10.1007/s00170-015-6912-x
Dikshit MK, Puri AB, Maity A (2016) Optimization of surface roughness in ball-end milling using teaching-learning-based optimization and response surface methodology. Proc IMechE Part B: J Eng Manuf 231(14):2596–2607. https://doi.org/10.1177/0954405416634266
Masmiati N, Sarhan AAD, Hassan MAN, Hamdi M (2016) Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement 86:253–265. https://doi.org/10.1016/j.measurement.2016.02.049
Coto B, Navas V G, Francisco OGD, Aranzabe A (2011) Influences of turning parameters in surface residual stresses in AISI 4340 steel. Int J Adv Manuf Technol 53(9-12):911–919. https://doi.org/10.1007/s00170-010-2890-1
Guo Q, Ye L, Wang YL, Feng HT, Li Y (2014) Comparative assessment of surface roughness and microstructure produced in whirlwind milling of bearing steel. Mach Sci Technol 18:251–276. https://doi.org/10.1080/10910344.2014.897843
Guo Q, Chang L, Ye L, Wang YL, Feng HT, Cao Y, Lian Q, Li Y (2013) Residual stress, nanohardness and microstructure changes in whirlwind milling of GCr15 steel. Mater Manuf Process 28:1047–1052. https://doi.org/10.1080/10426914.2013.763963
He Y, Liu C, Li YF, Wang LX, Wang YL (2018) Transient thermal and analytical model of whirling process based on time-varying heat source in machining screw. J Mech Eng 54(15):180–190. https://doi.org/10.3901/JME.2018.15.180
