Comprehensive genomic characterization defines human glioblastoma genes and core pathways

Nature - Tập 455 Số 7216 - Trang 1061-1068 - 2008
Roger E. McLendon1, Allan H. Friedman1, D D Bigner1, Erwin G. Van Meir2, Daniel J. Brat2, Gena M. Mastrogianakis2, Jeffrey J. Olson2, Takamasa Kayama3, Norman L. Lehman3, Ken Aldape4, W.K. Alfred Yung4, Oliver Bögler4, John N. Weinstein4, Scott Vandenberg5, Mitchel S. Berger5, Michael D. Prados5, Donna M. Muzny6, Margaret Morgan6, Stephen W. Scherer6, Aniko Sabo6, Lynn Nazareth6, Lora Lewis6, Otis Hall6, Yiming Zhu6, Yanru Ren6, Omar Alvi6, Jiqiang Yao6, Alicia Hawes6, Shalini N. Jhangiani6, Gerald R. Fowler6, Anthony San Lucas6, Christie Kovar6, Andrew Cree6, Huyen Dinh6, Jireh Santibanez6, Vandita Joshi6, Manuel L. Gonzalez-Garay6, Christopher A. Miller6, Aleksandar Milosavljevic6, L A Donehower6, David A. Wheeler6, Richard A. Gibbs6, Kristian Cibulskis7, Carrie Sougnez7, Tim Fennell7, Scott Mahan7, Jane Wilkinson7, Liuda Ziaugra7, Robert C. Onofrio7, Toby Bloom7, Robert W. Nicol7, Kristin Ardlie7, Jennifer Baldwin7, Stacey Gabriel7, Sı́lvia Beà7,8, Jun Li9, Robert S. Fulton9, Michael D. McLellan9, John W. Wallis9, David E. Larson9, Xiaoqi Shi9, Rachel M. Abbott9, Lucinda Fulton9, Ken Chen9, Daniel C. Koboldt9, Michael C. Wendl9, Rick Meyer9, Yuzhu Tang9, Ling Lin9, John R. Osborne9, Brian H. Dunford-Shore9, Tracie L. Miner9, Kim D. Delehaunty9, Chris Markovic9, G.M. Swift9, William Courtney9, Craig Pohl9, Scott Abbott9, Amy Hawkins9, Shin Leong9, Carrie A. Haipek9, Heather K. Schmidt9, Maddy Wiechert9, Tammi L. Vickery9, Shaun P. Scott9, David J. Dooling9, Asif Chinwalla9, George M. Weinstock9, Elaine R. Mardis9, Joan E. Bailey‐Wilson9, Gad Getz7, Wendy Winckler7, Roel G.W. Verhaak7, Michael S. Lawrence7, Michael O’Kelly7, Jim Robinson7, Gabriele Alexe7, Rameen Beroukhim7, Scott L. Carter7, Derek Y. Chiang7, Jennifer E. Gould7, Supriya Gupta7, Joseph H. Korn7, Craig H. Mermel7, Jill P. Mesirov7, Stefano Monti7, Huy Nguyen7, Joel N. Hirschhorn7, Michael Reich7, Nicolas Stransky7, Barbara A. Weir7, Levi A. Garraway7, Todd R. Golub7, Matthew Meyerson7, Lynda Chin7, Alexei Protopopov7, Jiexin Zhang7, Ilana Perna7, Stanley M Aronson7, N. Sathiamoorthy7, Gang Ren7, Jun Yao7, Wolf R. Wiedemeyer7, Hyun Soo Kim7, Won Kong Sek7, Yonghong Xiao7, Isaac S. Kohane7, J.G. Seidman7, Peter J. Park7, Raju Kucherlapati7, Leslie Cope10, James G. Herman10, Daniel J. Weisenberger11, Fei Pan11, David D.L. Bowtell11, Leander Van Neste12, Myungsoo Joo10, Kornel E. Schuebel10, Lars Feuerbach10, Devin Absher, Jun Z. Li13, Audrey Southwick14, Shannon D. Brady14, Amita Aggarwal14, Tisha Chung14, G.K. Dey14, James D. Brooks14, Inez Myin‐Germeys, Paul T. Spellman15, Elizabeth Purdom16, Lakshmi R. Jakkula15, Anna Lapuk15, Henry Marr15, Shannon Dorton15, Grace Yoon16, Ju Han15, Amrita Ray15, Victoria Wang16, Steffen Durinck15, Mark D. Robinson17, Nicholas J. Wang15, Karen Vranizan16, Vivian Peng16, Eric Van Name16, Gerald Fontenay15, John Ngai16, John G. Conboy15, Bahram Parvin15, Heidi S. Feiler15, Terence P. Speed16,17, Joe W. Gray15, Cameron Brennan18, Nicholas D. Socci18, Adam B. Olshen18, Justin Taylor19,18, Alex E. Lash18, Nikolaus Schultz18, Boris Reva18, Yevgeniy Antipin18, A. I. Stukalov18, Benjamin Groß18, Ethan Cerami18, Qing Wei18, Li Qin18, Venkatraman Seshan18, Liliana Villafania18, Magali Cavatore18, Laetitia Borsu18, Agnès Viale18, William L. Gerald18, Chris Sander18, Marc Ladanyi18, Charles M. Perou20, D. Neil Hayes20, Michael D. Topal20, Katherine A. Hoadley20, Yuan Qi20, S. Balu20, Yan Shi20, Junyuan Wu20, Robert Penny, Michael Bittner21, Troy Shelton, Elizabeth Lenkiewicz, Scott Morris, Debbie Beasley, Živa Ramšak, A Kahn, Robert Sfeir, Jessica Chen, Daniel E. Nassau, Li Feng, Erin Hickey, Anna D. Barker22, Daniela S. Gerhard22, Joseph G. Vockley22, Carolyn C. Compton22, Jim Vaught22, Peter L. Fielding22, Martin L. Ferguson, Carl Schaefer22, Jinghui Zhang22, S Madhavan22, Kenneth H. Buetow22, Pedro Jares22, Peter J. Good22, David Shteynberg22, Da Yang22, Jane L. Peterson22, Elizabeth J. Thomson22
1Duke University, Durham, United States
2Emory University, Atlanta, United States
3Henry Ford Health System, Detroit, United States
4The University of Texas MD Anderson Cancer Center, Houston, United States
5University of California, San Francisco, San Francisco, United States
6Baylor College of Medicine, Houston, United States
7Harvard University, Cambridge, United States
8Massachusetts Institute of Technology, Cambridge, United States
9Washington University in St Louis, St Louis, United States
10Johns Hopkins University, Baltimore, United States
11University of Southern California, Los Angeles, United States
12Ghent University, Ghent, Belgium
13University of Michigan–Ann Arbor, Ann Arbor, United States
14Stanford University, Stanford, United States
15Lawrence Berkeley National Laboratory, Berkeley, United States
16University of California, Berkeley, Berkeley, United States
17Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
18Memorial Sloan Kettering Cancer Center, New York, United States
19Cornell University, Ithaca, United States
20University of North Carolina at Chapel Hill, Chapel Hill, United States
21Translational Genomics Research Institute, Phoenix, United States
22National Institutes of Health, Bethesda, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Furnari, F. B. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007)

Mischel, P. S. & Cloughesy, T. F. Targeted molecular therapy of GBM. Brain Pathol. 13, 52–61 (2003)

Mischel, P. S., Nelson, S. F. & Cloughesy, T. F. Molecular analysis of glioblastoma: pathway profiling and its implications for patient therapy. Cancer Biol. Ther. 2, 242–247 (2003)

Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006)

Maher, E. A. et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 66, 11502–11513 (2006)

Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006)

Diehn, M. et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl Acad. Sci. USA 105, 5213–5218 (2008)

Liang, Y. et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl Acad. Sci. USA 102, 5814–5819 (2005)

Freije, W. A. et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 64, 6503–6510 (2004)

Murat, A. et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 26, 3015–3024 (2008)

Nutt, C. L. et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63, 1602–1607 (2003)

Sun, L. et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9, 287–300 (2006)

Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007)

Wiedemeyer, R. et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell 13, 355–364 (2008)

Taylor, B. S. et al. Functional copy-number alterations in cancer. PLoS ONE (in the press)

Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006)

Cahill, D. P. et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007)

Getz, G. et al. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007)

Thiel, G. et al. Somatic mutations in the neurofibromatosis 1 gene in gliomas and primitive neuroectodermal tumours. Anticancer Res. 15, 2495–2499 (1995)

Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005)

Reilly, K. M., Loisel, D. A., Bronson, R. T., McLaughlin, M. E. & Jacks, T. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genet. 26, 109–113 (2000)

Kwon, C. H. et al. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res. 68, 3286–3294 (2008)

Upadhyaya, M. et al. Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Hum. Genet. 99, 88–92 (1996)

Side, L. et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Engl. J. Med. 336, 1713–1720 (1997)

Fahsold, R. et al. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am. J. Hum. Genet. 66, 790–818 (2000)

Messiaen, L. M. et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum. Mutat. 15, 541–555 (2000)

Humphrey, P. A. et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA 87, 4207–4211 (1990)

Lee, J. C. et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med. 3, e485 (2006)

Ekstrand, A. J., Sugawa, N., James, C. D. & Collins, V. P. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl Acad. Sci. USA 89, 4309–4313 (1992)

Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004)

Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91, 355–358 (2004)

Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004)

Gallia, G. L. et al. PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol. Cancer Res. 4, 709–714 (2006)

Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer 5, 921–929 (2005)

Bader, A. G., Kang, S. & Vogt, P. K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. . Proc. Natl Acad. Sci. USA 103, 1475–1479 (2006)

Liu, Z. & Roberts, T. M. Human tumor mutants in the p110α subunit of PI3K. Cell Cycle 5, 675–677 (2006)

Huang, C. H. et al. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318, 1744–1748 (2007)

Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61, 7426–7429 (2001)

Mizoguchi, M., Nutt, C. L., Mohapatra, G. & Louis, D. N. Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol. 14, 372–377 (2004)

Zhang, H. et al. Comprehensive analysis of oncogenic effects of PIK3CA mutations in human mammary epithelial cells. Breast Cancer Res. Treat. doi: 10.1007/s10549-007-9847-6 (2007)

Pegg, A. E., Dolan, M. E. & Moschel, R. C. Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog. Nucleic Acid Res. Mol. Biol. 51, 167–223 (1995)

Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000)

Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005)

Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007)

Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006)

Drablos, F. et al. Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair 3, 1389–1407 (2004)

Hirose, Y., Kreklau, E. L., Erickson, L. C., Berger, M. S. & Pieper, R. O. Delayed repletion of O6-methylguanine-DNA methyltransferase resulting in failure to protect the human glioblastoma cell line SF767 from temozolomide-induced cytotoxicity. J. Neurosurg. 98, 591–598 (2003)

Kaina, B., Christmann, M., Naumann, S. & Roos, W. P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6, 1079–1099 (2007)

Casorelli, I., Russo, M. T. & Bignami, M. Role of mismatch repair and MGMT in response to anticancer therapies. Anticancer Agents Med. Chem. 8, 368–380 (2008)

Yang, J. L., Qu, X. J., Yu, Y., Kohn, E. C. & Friedlander, M. L. Selective sensitivity to carboxyamidotriazole by human tumor cell lines with DNA mismatch repair deficiency. Int. J. Cancer 123, 258–263 (2008)