Comprehensive analysis of evolution of serrated hysteresis loops of Alloy 617 M during low cycle fatigue

Materials Today Communications - Tập 33 - Trang 104893 - 2022
Vani Shankar1, Anish Kumar1
1Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research; A CI of Homi Bhabha National Institute, Kalpakkam 603102, Tamil Nadu, India

Tài liệu tham khảo

Cabibbo, 2008, Creep behavior of INCOLOY alloy 617, J. Mater. Sci., 43, 2912, 10.1007/s10853-007-1803-7 Gariboldi, 2008, Investigation on precipitation phenomena of Ni–22Cr–12Co–9Mo alloy aged and crept at high temperature, Int J. Press. Vessels Pip., 85, 63, 10.1016/j.ijpvp.2007.06.014 Wu, 2008, Microstructure of Long-Term Aged IN617 Ni-Base Superalloy, Metall. Mater. Trans. A, 39, 2569, 10.1007/s11661-008-9618-y Q. Wu and V.K. Vasudevan, Characterization of Boiler Materials for Ultracritical Coal Power Plants, Annual Progress Report for Period August 1, 2002 to July 30, 2003 under UT-Battelle Sub Contract Number 4000017043, 2004. Wu, 2008, Microstructure of Long-Term Aged IN617 Ni-Base Superalloy, Metall. Mater. Trans., 39A, 2569, 10.1007/s11661-008-9618-y Shankar, 2001, Microstructure and mechanical properties of Inconel 625 superalloy, J. Nucl. Mater., 288, 222, 10.1016/S0022-3115(00)00723-6 Shankar, 2004, , Effects of temperature and strain rate on tensile properties and activation energy for dynamic strain aging in alloy 625, Met. Mater. Trans. A, 35, 3129, 10.1007/s11661-004-0057-0 Bourgeois, 2020, Transforming solid-state precipitates via excess vacancies, Nat. Commun., 11, 1248, 10.1038/s41467-020-15087-1 Rodriguez, 1984, Serrated plastic flow, Bull. Mater. Sci., 6, 653, 10.1007/BF02743993 van den Beukel, 1975, Theory of the effect of dynamic strain aging on mechanical properties, Phys. Stat. Sol., 30, 197, 10.1002/pssa.2210300120 1994, E606-92. Standard recommended practice for constant- amplitude low-cycle fatigue testing, 522 Bhanu Sankara Rao, 1986, Dynamic strain ageing effects in low cycle fatigue, High. Temp. Mater. Proc., 7, 171, 10.1515/HTMP.1986.7.2-3.171 Mulford, 1979, New observations on the mechanisms of dynamic strain aging and of jerky flow, Acta Met., 27, 1125, 10.1016/0001-6160(79)90130-5 Beese, 2018, Absence of dynamic strain ageing in an additively manufactured nickel-base superalloy, Nat. Commun., 9, 2083, 10.1038/s41467-018-04473-5 Shankar, 2017, Occurrence of dynamic strain aging in Alloy 617M under low cycle fatigue, Int. J. Fatigue, 100, 12, 10.1016/j.ijfatigue.2017.03.001 de Almeida, 1994, Activation energy calculation and dynamic strain aging in austenitic stainless steel, Scr. Metall. Et. Mater., 31, 505, 10.1016/0956-716X(94)90134-1 McCormick, 1972, A model for the Portevin-Le Chatelier effect in substitutional alloys, Acta Metall., 20, 351, 10.1016/0001-6160(72)90028-4 M.S. Pham, Fatigue behaviour of AISI 316L, Mechanical response, microstructural evolution, fatigue crack propagation, & physically-based constitutive modelling, 2013, Doctoral Thesis, https://doi.org/10.3929/ethz-a-009757628. Pham, 2012, Dynamic strain ageing of AISI 316L during cyclic loading at 300 1C: Mechanism, evolution, and its effects, Mater. Sci. Eng. A, 556, 122, 10.1016/j.msea.2012.06.067 ASTM E112–10, Standard Test Method for Determining Average Grain Size, ASTM International, West Conshohocken, Pa. (2010). Mo, 2013, Mechanism of plastic deformation of a Ni-based superalloy for VHTR applications, J. Nucl. Mater., 441, 695, 10.1016/j.jnucmat.2013.03.083 Sarkar, 2020, Mechanisms of Fatigue Endurance in Alloy 617M at Different Temperatures (300–1023 K), JMEPEG, 29, 5663, 10.1007/s11665-020-05013-3 〈h〉〈ttps://www.hightempmetals.com/techdata/hitempInconel617data.php〉. Johnson, 1965, Trans. AIME, 233, 1332 Tsuchida, 2010, Effect of hydrogen absorption on strain-induced low-cycle fatigue of low carbon steel, Procedia Eng., 2, 555, 10.1016/j.proeng.2010.03.060 Venkadesan, 1992, Activation energy for serrated flow in a 15Cr-15Ni Ti-modified austenite stainless steel, Acta Metall., 40, 569, 10.1016/0956-7151(92)90406-5 Hayes, 1983, On a proposed theory for the disappearance of serrated flow in f.c.c. Ni alloys, Acta Metall., 3, 365, 10.1016/0001-6160(83)90213-4 Hayes, 1984, A proposed model for the disappearance of serrated flow in two Fe alloys, Acta Met., 32, 259, 10.1016/0001-6160(84)90054-3 Ekaputra, 2016, Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617, Nucl. Eng. Technol., 48, 1387, 10.1016/j.net.2016.06.013 Kaoumi, 2014, Tensile Deformation Behavior and Microstructure Evolution of Ni-Based Superalloy 617, J. Nucl. Mater., 454, 265, 10.1016/j.jnucmat.2014.08.003 Rahman, 2009, Characterization of High Temperature Deformation Behavior of Inconel 617, Mech. Mater., 41, 10.1016/j.mechmat.2008.10.003 Cottrell, 1952, LX. The formation of immobile dislocations during slip. The London, Edinburgh, Dublin Philos. Mag. J. Sci., 43, 645, 10.1080/14786440608520220 Bhanu Sankara Rao, 2004, Complexities if fatigue of engineering materials at elevated temperatures, Trans. Indian Inst. Met., 57, 537 Barnby, 1965, Effect of Strain Aging on the High Temperature Tensile Properties of an AISI 316 Austenitic Stainless Steel, J. Iron Steel Inst., 203, 392 Michel, 1973, Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21°and 816°C, Acta Metall., 21, 1269, 10.1016/0001-6160(73)90168-5 Kutumba Rao, 1975, The Grain Size Dependence of Fracture in a Cr-Mn-N Austenitic 300 to 1300K Flow and Steel from 300 to 1300K, Metall. Trans. A, 6A, 77 Mannan, 1993, Role of dynamic strain ageing in low cycle fatigue, Bull. Mater. Sci., 16, 561, 10.1007/BF02757656 Bhanu Sankara Rao, 1990, Manifestations of dynamic strain ageing during low cycle fatigue of type 304 stainless steel, Met. Mater. Proc., 2, 17