Comprehensive Study on the Cutting Force Modeling and Machinability of High Frequency Electrical Discharge Assisted Milling Process Using a Novel Tool
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang, X., & Richard Liu, C. (1999). Machining titanium and its alloys. Machining Science and Technology, 3(1), 107–139. https://doi.org/10.1080/10940349908945686
Narutaki, N., Murakoshi, A., Motonishi, S., & Takeyama, H. (1983). Study on machining of titanium alloys. CIRP Annals, 32(1), 65–69. https://doi.org/10.1016/s0007-8506(07)63362-9
Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability—A review. Journal of Materials Processing Technology, 68(3), 262–274. https://doi.org/10.1016/s0924-0136(96)00030-1
Liao, Z., la Monaca, A., Murray, J., Speidel, A., Ushmaev, D., Clare, A., & M’Saoubi, R. (2021). Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. International Journal of Machine Tools and Manufacture, 162, 103687. https://doi.org/10.1016/j.ijmachtools.2020.103687
Dandekar, C. R., Shin, Y. C., & Barnes, J. (2010). Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 50(2), 174–182. https://doi.org/10.1016/j.ijmachtools.2009.10.013
Niu, Y., Jiao, F., Zhao, B., & Wang, D. (2017). Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 93(9–12), 4345–4356. https://doi.org/10.1007/s00170-017-0871-3
Yadav, U. S., & Yadava, V. (2015). Experimental modelling and optimisation of process parameters of hole drilling by electrical discharge machining of aerospace titanium alloy. International Journal of Manufacturing Technology and Management, 29(3/4), 211–234. https://doi.org/10.1504/ijmtm.2015.069256
Ayed, Y., Germain, G., Ben Salem, W., & Hamdi, H. (2014). Experimental and numerical study of laser-assisted machining of Ti6Al4V titanium alloy. Finite Elements in Analysis and Design, 92, 72–79. https://doi.org/10.1016/j.finel.2014.08.006
Al-Ahmari, A. M. A., Rasheed, M. S., Mohammed, M. K., & Saleh, T. (2015). A hybrid machining process combining micro-EDM and laser beam machining of nickel–titanium-based shape memory alloy. Materials and Manufacturing Processes, 31(4), 447–455. https://doi.org/10.1080/10426914.2015.1019102
Gu, L., Li, L., Zhao, W., & Rajurkar, K. P. (2012). Electrical discharge machining of Ti6Al4V with a bundled electrode. International Journal of Machine Tools and Manufacture, 53(1), 100–106. https://doi.org/10.1016/j.ijmachtools.2011.10.002
Goiogana, M., Sarasua, J. A., Ramos, J. M., Echavarri, L., & Cascón, I. (2016). Pulsed ultrasonic assisted electrical discharge machining for finishing operations. International Journal of Machine Tools and Manufacture, 109, 87–93. https://doi.org/10.1016/j.ijmachtools.2016.07.005
Lauwers, B., Klocke, F., Klink, A., Tekkaya, A. E., Neugebauer, R., & Mcintosh, D. (2014). Hybrid processes in manufacturing. CIRP Annals, 63(2), 561–583. https://doi.org/10.1016/j.cirp.2014.05.003
Kurniawan, R., Thirumalai Kumaran, S., Arumuga Prabu, V., Zhen, Y., Park, K. M., Kwak, Y. I., & Ko, T. J. (2017). Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (USHF-EDAM) for deburring drilled holes in CFRP composite. Measurement, 110, 98–115. https://doi.org/10.1016/j.measurement.2017.06.008
Li, C. P., Kim, M.-Y., Islam, M. M., & Ko, T. J. (2016). Mechanism analysis of hybrid machining process comprising EDM and end milling. Journal of Materials Processing Technology, 237, 309–319. https://doi.org/10.1016/j.jmatprotec.2016.06.022
Li, C., Xu, M., Yu, Z., Huang, L., Li, S., Li, P., Niu, Q., & Ko, T. J. (2020). Electrical discharge-assisted milling for machining titanium alloy. Journal of Materials Processing Technology, 285, 116785. https://doi.org/10.1016/j.jmatprotec.2020.116785
Li, C., Huang, L., Xu, M., Chen, Y., Chen, J., & Ko, T. J. (2022). Processing mechanism of electrical discharge-assisted milling titanium alloy based on 3D thermal-mechanical coupling cutting model. Journal of Manufacturing Processes, 78, 107–119. https://doi.org/10.1016/j.jmapro.2022.04.012
Xu, M., Li, C., Kurniawan, R., Park, G., Chen, J., & Ko, T. J. (2022). Study on surface integrity of titanium alloy machined by electrical discharge-assisted milling. Journal of Materials Processing Technology, 299, 117334. https://doi.org/10.1016/j.jmatprotec.2021.117334
Jung, S. T., Kurniawan, R., Thirumalai Kumaran, S., Yoon, I. J., & Ko, T. J. (2020). Mechanism study of micro-electrical discharge drilling method during micro-dimpling. Journal of Mechanical Science and Technology, 34, 2549–2559. https://doi.org/10.1007/s12206-020-0530-8
Yun, E., Lee, K., & Lee, S. (2004). Improvement of high-temperature hardness of (TiC, TiB)/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation. Surface Coatings and Technology, 184(1), 74–83.
Kurniawan, R., et al. (2017). Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement, 110, 98–115.
Jithin, S., Bhandarkar, U. V., & Joshi, S. S. (2017). Analytical simulation of random textures generated in electrical discharge texturing. Journal of Manufacturing Science and Engineering, 139(11), 111002. https://doi.org/10.1115/1.4037322
Patel, M. R., et al. (1989). Theoretical models of the electrical discharge machining process II The anode erosion model. Journal of Applied Physics, 66(9), 4104–4111.
Shatla, M., & Altan, T. (2000). Analytical modeling of drilling and ball end milling. Journal of Materials Processing Technology, 98(1), 125–133.
Budak, E., Altintas, Y., & Armarego, E. J. A. (1996). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering, 118(2), 216–224.
Dudzinski, D., & Molinari, A. (1997). A modelling of cutting for visco-plastic materials. International Journal of Mechanical Sciences, 39(4), 369–389.
Manjunathaiah, J., & Endres, W. J. (2000). A new model and analysis of orthogonal machining with an edge-radiused tool. Journal of Manufacturing Science and Engineering—Transactions of the ASME, 122(3), 384–390.
Merchant, M. E. (1945). Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. Journal of Applied Physics, 16(6), 318–324.
Waldorf, D. J., DeVor, R. E., & Kapoor, S. G. (1998). A slip-line field for ploughing during orthogonal cutting. ASME J. Manuf. Sci. Eng., 120(4), 693–699.
Hang, Z., Hao, Z., Rong, Y., Wei, W., & Fangyu, P. (2021). Analytical modeling of cutting forces considering material softening effect in laser-assisted milling of AerMet100 steel. International Journal of Advanced Manufacturing Technology, 113, 247–260.
Tounsi, N., Vincenti, J., Otho, A., & Elbestawi, M. A. (2002). From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. International Journal of Machine Tools and Manufacture, 42(12), 1373–1383.
Arrazola, P.-J., Garay, A., Iriarte, L.-M., Armendia, M., Marya, S., & Le Maître, F. (2009). Machinability of titanium alloys (Ti6Al4V and Ti555.3). Journal of Materials Processing Technology, 209(5), 2223–2230. https://doi.org/10.1016/j.jmatprotec.2008.06.020
Sun, J., & Guo, Y. B. (2008). A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 48(12–13), 1486–1494. https://doi.org/10.1016/j.ijmachtools.2008.04.002