Comprehensive Integration of Single-Cell Data

Cell - Tập 177 Số 7 - Trang 1888-1902.e21 - 2019
Tim Stuart1, Andrew Butler2,1, Paul Hoffman1, Christoph Hafemeister1, Efthymia Papalexi2,1, William M. Mauck2,1, Yuhan Hao2,1, Marlon Stoeckius3, Peter Smibert3, Rahul Satija2,1
1New York Genome Center, New York, NY, USA
2Center for Genomics and Systems Biology, New York University, New York, NY, USA
3Technology Innovation Lab, New York Genome Center, New York, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achim, 2015, High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin, Nat. Biotechnol., 33, 503, 10.1038/nbt.3209

Alemany, 2018, Whole-organism clone tracing using single-cell sequencing, Nature, 556, 108, 10.1038/nature25969

Allen Institute. 2018. Allen Brain Data Portal. http://celltypes.brain-map.org/api/v2/well_known_file_download/694413985.

Arya, S., Mount, D., Kemp, S.E., and Jefferis, G. (2018). RANN: Fast Nearest Neighbour Search (Wraps ANN Library) Using L2 Metric. https://cran.r-project.org/web/packages/RANN/index.html.

Baglama, J., Reichel, L., and Lewis, B.W. 2018. irlba: Fast Truncated Singular Value Decomposition and Principal Components Analysis for Large Dense and Sparse Matrices. https://cran.r-project.org/web/packages/irlba/index.html.

Baron, 2016, A Single-Cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure, Cell Syst., 3, 346, 10.1016/j.cels.2016.08.011

Benaglia, 2009, mixtools: An R Package for Analyzing Finite Mixture Models, J. Stat. Softw., 32, 1

Bendall, 2014, Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development, Cell, 157, 714, 10.1016/j.cell.2014.04.005

Blitzer, 2006, Domain adaptation with structural correspondence learning. Proc. Conf. Empir, Methods Nat. Lang. Process., 120

Butler, 2018, Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol., 36, 411, 10.1038/nbt.4096

Büttner, 2017, Assessment of batch-correction methods for scRNA-seq data with a new test metric, bioRxiv

Cao, 2018, Joint profiling of chromatin accessibility and gene expression in thousands of single cells, Science, 361, 1380, 10.1126/science.aau0730

Codeluppi, 2018, Spatial organization of the somatosensory cortex revealed by osmFISH, Nat. Methods, 15, 932, 10.1038/s41592-018-0175-z

Corces, 2016, Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution, Nat. Genet., 48, 1193, 10.1038/ng.3646

Cusanovich, 2018, A Single-Cell atlas of in vivo mammalian chromatin accessibility, Cell, 174, 1309, 10.1016/j.cell.2018.06.052

de Bruin, 2014, Impact of interferon-γ on hematopoiesis, Blood, 124, 2479, 10.1182/blood-2014-04-568451

Dixit, 2016, Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens, Cell, 167, 1853, 10.1016/j.cell.2016.11.038

Dobin, 2013, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15, 10.1093/bioinformatics/bts635

Dudoit, 2002, Comparison of discrimination methods for the classification of tumors using gene expression data, J. Am. Stat. Assoc., 97, 77, 10.1198/016214502753479248

Falcon, 2007, Using GOstats to test gene lists for GO term association, Bioinformatics, 23, 257, 10.1093/bioinformatics/btl567

Feng, 1987, Progressive sequence alignment as a prerequisite to correct phylogenetic trees, J. Mol. Evol., 25, 351, 10.1007/BF02603120

Goltsev, 2018, Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging, Cell, 174, 968, 10.1016/j.cell.2018.07.010

Grün, 2016, De novo prediction of stem cell identity using Single-Cell transcriptome data, Cell Stem Cell, 19, 266, 10.1016/j.stem.2016.05.010

Hafemeister, 2019, Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression, bioRxiv

Haghverdi, 2018, Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors, Nat. Biotechnol., 36, 421, 10.1038/nbt.4091

Hahne, 2016, 335

Halpern, 2017, Single-cell spatial reconstruction reveals global division of labour in the mammalian liver, Nature, 542, 352, 10.1038/nature21065

Heinz, 2010, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol. Cell, 38, 576, 10.1016/j.molcel.2010.05.004

Hie, 2019, Efficient integration of heterogeneous single-cell transcriptomes using Scanorama, Nat. Biotechnol., 10.1038/s41587-019-0113-3

Karaiskos, 2017, The Drosophila embryo at single-cell transcriptome resolution, Science, 358, 194, 10.1126/science.aan3235

Kelsey, 2017, Single-cell epigenomics: Recording the past and predicting the future, Science, 358, 69, 10.1126/science.aan6826

Keren, 2018, A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging, Cell, 174, 1373, 10.1016/j.cell.2018.08.039

Kiselev, 2018, scmap: projection of single-cell RNA-seq data across data sets, Nat. Methods, 15, 359, 10.1038/nmeth.4644

Lake, 2018, Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain, Nat. Biotechnol., 36, 70, 10.1038/nbt.4038

Langfelder, 2008, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, 9, 559, 10.1186/1471-2105-9-559

Langmead, 2009, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol., 10, R25, 10.1186/gb-2009-10-3-r25

Lara-Astiaso, 2014, Immunogenetics. Chromatin state dynamics during blood formation, Science, 345, 943, 10.1126/science.1256271

Lawlor, 2017, Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes, Genome Res., 27, 208, 10.1101/gr.212720.116

Levine, 2015, Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis, Cell, 162, 184, 10.1016/j.cell.2015.05.047

Li, 2009, The Sequence Alignment/Map format and SAMtools, Bioinformatics, 25, 2078, 10.1093/bioinformatics/btp352

Li, 2010, De novo assembly of human genomes with massively parallel short read sequencing, Genome Res., 20, 265, 10.1101/gr.097261.109

Li, B., Kowalczyk, M.S., Dionne, K., Ashenberg, O., Tabaka, M., Tickle, T., Lee, J., Shekhar, K., Slyper, M., Waldman, J., et al. 2018. Census of Immune Cells. https://preview.data.humancellatlas.org.

Linnarsson, S. 2018. Data and code availability.http://linnarssonlab.org/osmFISH/availability.

Lopez, 2018, Deep generative modeling for single-cell transcriptomics, Nat. Methods, 15, 1053, 10.1038/s41592-018-0229-2

Love, 2014, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, 10.1186/s13059-014-0550-8

Lun, 2016, A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor, F1000Res., 5, 2122

Luo, 2018, Robust single-cell DNA methylome profiling with snmC-seq2, Nat. Commun., 9, 3824, 10.1038/s41467-018-06355-2

Mayer, 2018, Developmental diversification of cortical inhibitory interneurons, Nature, 555, 457, 10.1038/nature25999

Moffitt, 2018, Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region, Science, 362, 5324, 10.1126/science.aau5324

Mount, D.M., and Arya, S. (2010). ANN: A Library for Approximate Nearest Neighbor Searching. http://www.cs.umd.edu/∼mount/ANN/.

Muraro, 2016, A Single-Cell transcriptome atlas of the human pancreas, Cell Syst., 3, 385, 10.1016/j.cels.2016.09.002

Nagano, 2013, Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502, 59, 10.1038/nature12593

Navin, 2011, Tumour evolution inferred by single-cell sequencing, Nature, 472, 90, 10.1038/nature09807

Ntranos, 2019, A discriminative learning approach to differential expression analysis for single-cell RNA-seq, Nat. Methods, 16, 163, 10.1038/s41592-018-0303-9

Okhrimenko, 2014, Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory, Proc. Natl. Acad. Sci. USA, 111, 9229, 10.1073/pnas.1318731111

Paradis, 2004, APE: Analyses of phylogenetics and evolution in R language, Bioinformatics, 20, 289, 10.1093/bioinformatics/btg412

Peterson, 2017, Multiplexed quantification of proteins and transcripts in single cells, Nat. Biotechnol., 35, 936, 10.1038/nbt.3973

Pliner, 2018, Cicero predicts cis-regulatory DNA interactions from Single-Cell chromatin accessibility data, Mol. Cell, 71, 858, 10.1016/j.molcel.2018.06.044

Preissl, 2018, Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation, Nat. Neurosci., 21, 432, 10.1038/s41593-018-0079-3

Qiu, 2017, Reversed graph embedding resolves complex single-cell trajectories, Nat. Methods, 14, 979, 10.1038/nmeth.4402

Quinlan, 2010, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841, 10.1093/bioinformatics/btq033

Raina, 2007, Self-taught Learning: Transfer Learning from Unlabeled Data. Proc. Int. Conf, Mach. Learn, 759

Raj, 2018, Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain, Nat. Biotechnol., 36, 442, 10.1038/nbt.4103

Ramani, 2017, Massively multiplex single-cell Hi-C, Nat. Methods, 14, 263, 10.1038/nmeth.4155

Ramírez, 2016, deepTools2: a next generation web server for deep-sequencing data analysis, Nucleic Acids Res., 44, W160, 10.1093/nar/gkw257

Regev, 2017, The Human Cell Atlas, eLife, 6, 10.7554/eLife.27041

Rousseeuw, 1987, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53, 10.1016/0377-0427(87)90125-7

Safra, 2017, The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution, Nature, 551, 251, 10.1038/nature24456

Satija, 2015, Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol., 33, 495, 10.1038/nbt.3192

2018, Barcoded Plate-Based Single Cell RNA-seq, Protocols.io

Sato, 2004, A functional genomics strategy reveals Rora as a component of the mammalian circadian clock, Neuron, 43, 527, 10.1016/j.neuron.2004.07.018

Saunders, 2018, Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain, Cell, 174, 1015, 10.1016/j.cell.2018.07.028

The Tabula Muris Consortium. (2017). Single-cell RNA-seq data from Smart-seq2 sequencing of FACS sorted cells. https://figshare.com/articles/Single-cell_RNA-seq_data_from_Smart-seq2_sequencing_of_FACS_sorted_cells/5715040.

The Tabula Muris Consortium. (2018a). Single-cell RNA-seq data from microfluidic emulsion. https://figshare.com/articles/Single-cell_RNA-seq_data_from_microfluidic_emulsion_v2_/5968960.

2018, Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris, Nature, 562, 367, 10.1038/s41586-018-0590-4

Segerstolpe, 2016, Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes, Cell Metab., 24, 593, 10.1016/j.cmet.2016.08.020

Shekhar, 2016, Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics, Cell, 166, 1308, 10.1016/j.cell.2016.07.054

Spanjaard, 2018, Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars, Nat. Biotechnol., 36, 469, 10.1038/nbt.4124

Stein-O'Brien, 2019, Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species, Cell Syst., 395, 10.1016/j.cels.2019.04.004

Stoeckius, 2017, Simultaneous epitope and transcriptome measurement in single cells, Nat. Methods, 14, 865, 10.1038/nmeth.4380

Stoeckius, 2018, Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics, Genome Biol., 19, 224, 10.1186/s13059-018-1603-1

Storey, 2003, Statistical significance for genomewide studies, Proc. Natl. Acad. Sci. USA, 100, 9440, 10.1073/pnas.1530509100

Stuart, 2019, Integrative single-cell analysis, Nat. Rev. Genet, 20, 257, 10.1038/s41576-019-0093-7

Svensson, 2017, Power analysis of single-cell RNA-sequencing experiments, Nat. Methods, 14, 381, 10.1038/nmeth.4220

Svensson, 2018, Exponential scaling of single-cell RNA-seq in the past decade, Nat. Protoc., 13, 599, 10.1038/nprot.2017.149

Syken, 2003, Expression of T cell receptor beta locus in central nervous system neurons, Proc. Natl. Acad. Sci. USA, 100, 13048, 10.1073/pnas.1735415100

Tanay, 2017, Scaling single-cell genomics from phenomenology to mechanism, Nature, 541, 331, 10.1038/nature21350

Tasic, 2016, Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nat. Neurosci., 19, 335, 10.1038/nn.4216

Tasic, 2018, Shared and distinct transcriptomic cell types across neocortical areas, Nature, 563, 72, 10.1038/s41586-018-0654-5

Testi, 1989, T cell activation via Leu-23 (CD69), J. Immunol., 143, 1123, 10.4049/jimmunol.143.4.1123

Tibshirani, 2003, Class prediction by nearest shrunken centroids, with applications to DNA microarrays, Stat. Sci., 18, 104, 10.1214/ss/1056397488

Torre, 2018, Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH, Cell Syst., 6, 171, 10.1016/j.cels.2018.01.014

Trapnell, 2009, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, 25, 1105, 10.1093/bioinformatics/btp120

van Dijk, 2018, Recovering Gene Interactions from Single-Cell Data Using Data Diffusion, Cell, 174, 716, 10.1016/j.cell.2018.05.061

Venkatadri, 2014, Differential expression of mGluR2 in the developing cerebral cortex of the mouse, J. Biomed. Sci. Eng., 7, 1030, 10.4236/jbise.2014.713100

Vitak, 2017, Sequencing thousands of single-cell genomes with combinatorial indexing, Nat. Methods, 14, 302, 10.1038/nmeth.4154

Wang, 2010, Heterogeneous Domain Adaptation Using Manifold Alignment, Proc. Int. Joint Conf. Artif. Intell, 1541

Wang

Wang, 2018, Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science, 361, 10.1126/science.aat5691

Welch, 2019, Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity, Cell, 177, 1873, 10.1016/j.cell.2019.05.006

Witten, 2009, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, 10, 515, 10.1093/biostatistics/kxp008

Wolock, 2019, Scrublet: Computational identification of cell doublets in Single-Cell transcriptomic data, Cell Syst., 8, 281, 10.1016/j.cels.2018.11.005

Zheng, 2017, Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049, 10.1038/ncomms14049