Compound doping enables efficient CsPbBr3 nanocrystal light emitting diodes
Tài liệu tham khảo
Kovalenko, 2017, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science, 358, 745, 10.1126/science.aam7093
Yang, 2023, Towards micro-PeLED displays, Nat. Rev. Mater., 1
Ji, 2020, Highly stable Na: CsPb (Br, I) 3@ Al 2 O 3 nanocomposites prepared by a pre-protection strategy, Nanoscale, 12, 6403, 10.1039/D0NR00069H
Yan, 2019, LEDs using halide perovskite nanocrystal emitters, Nanoscale, 11, 11402, 10.1039/C9NR03533H
Xu, 2019, A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes, Mater. Today Nano, 6
Kim, 2022, Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes, Nat. Nanotechnol., 17, 590, 10.1038/s41565-022-01113-4
Song, 2015, Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Adv. Mater., 27, 7162, 10.1002/adma.201502567
Du, 2017, High-quality CsPbBr 3 perovskite nanocrystals for quantum dot light-emitting diodes, RSC Adv., 7, 10391, 10.1039/C6RA27665B
Xu, 2023, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics, Adv. Energy Mater., 13, 10.1002/aenm.202203911
Shangguan, 2020, The stability of metal halide perovskite nanocrystals—a key issue for the application on quantum-dot-based micro light-emitting diodes display, Nanomaterials, 10, 1375, 10.3390/nano10071375
Xu, 2020, Hysteresis and instability predicted in moisture degradation of perovskite solar cells, ACS Appl. Mater. Interfaces, 12, 48882, 10.1021/acsami.0c17323
Ji, 2021, Trioctylphosphine-assisted pre-protection low-temperature solvothermal synthesis of highly stable CsPbBr3/TiO2 nanocomposites, J. Phys. Chem. Lett., 12, 3786, 10.1021/acs.jpclett.1c00693
Wang, 2022, The influence of compression on the lattice stability of α-FAPbI 3 revealed by numerical simulation, New J. Chem., 46, 16130, 10.1039/D2NJ01711C
Lu, 2020, Doping and ion substitution in colloidal metal halide perovskite nanocrystals, Chem. Soc. Rev., 49, 4953, 10.1039/C9CS00790C
Wang, 2017, High‐performance CsPb1− xSnxBr3 perovskite quantum dots for light‐emitting diodes, Angew. Chem., 129, 13838, 10.1002/ange.201706860
Begum, 2017, Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping, J. Am. Chem. Soc., 139, 731, 10.1021/jacs.6b09575
Zou, 2017, Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes, J. Am. Chem. Soc., 139, 11443, 10.1021/jacs.7b04000
Behera, 2019, Doping the smallest Shannon radii transition metal ion Ni (II) for stabilizing α-CsPbI3 perovskite nanocrystals, J. Phys. Chem. Lett., 10, 7916, 10.1021/acs.jpclett.9b03306
Kim, 2021, Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping, Adv. Funct. Mater., 31, 10.1002/adfm.202102770
Cheng, 2022, Dopant-induced slow spin relaxation in CsPbBr3 perovskite nanocrystals, ACS Energy Lett., 7, 4325, 10.1021/acsenergylett.2c01901
Lu, 2018, Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light‐emitting devices, Adv. Mater., 30, 10.1002/adma.201804691
Zhang, 2023, Influence of Sr doping on the photoelectronic properties of CsPbX 3 (X= Cl, Br, or I): a DFT investigation, Phys. Chem. Chem. Phys., 25, 9592, 10.1039/D2CP05867G
Swarnkar, 2018, Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3 (X= Cl, Br, I) perovskites?, ACS Energy Lett., 3, 286, 10.1021/acsenergylett.7b01197
Yao, 2019, Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes, J. Am. Chem. Soc., 141, 2069, 10.1021/jacs.8b11447
Chen, 2021, Highly stable CsPbI3: Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%, Nano Energy, 85, 10.1016/j.nanoen.2021.106033
Yuce, 2022, Improvement of photophysical properties of CsPbBr3 and Mn2+: CsPb (Br, Cl) 3 perovskite nanocrystals by Sr2+ doping for white light-emitting diodes, J. Phys. Chem. C, 126, 11277, 10.1021/acs.jpcc.2c01244
Guan, 2022, Enhanced emission efficiency in doped CsPbBr 3 perovskite nanocrystals: the role of ion valence, J. Mater. Chem. C, 10, 14737, 10.1039/D2TC03442E
Dang, 2017, In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals, ACS Nano, 11, 2124, 10.1021/acsnano.6b08324
Kirakosyan, 2019, Mechanistic insight into surface defect control in perovskite nanocrystals: ligands terminate the valence transition from Pb2+ to metallic Pb0, J. Phys. Chem. Lett., 10, 4222, 10.1021/acs.jpclett.9b01587
Xu, 2022, In situ passivation of Pb 0 traps by fluoride acid-based ionic liquids enables enhanced emission and stability of CsPbBr 3 nanocrystals for efficient white light-emitting diodes, Nanoscale, 14, 13779, 10.1039/D2NR03861G
Gao, 2022, Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films, Adv. Mater.
Kim, 2021, Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes, Nat. Photonics, 15, 148, 10.1038/s41566-020-00732-4
Wang, 2023, Stable FAPbI 3 hydrate structure by kinetics negotiation for solar cells, Sustain. Energy Fuels, 7, 1974, 10.1039/D3SE00062A
He, 2023, Effects of solvent vapor atmosphere on photovoltaic performance of perovskite solar cells, Crystals, 13, 549, 10.3390/cryst13040549
Li, 2016, Highly efficient perovskite nanocrystal light‐emitting diodes enabled by a universal crosslinking method, Adv. Mater., 28, 3528, 10.1002/adma.201600064