Compound doping enables efficient CsPbBr3 nanocrystal light emitting diodes

Materials Today Communications - Tập 37 - Trang 107537 - 2023
Fan Xu1,2, Xiaoyu Yang1,3, Qixuan Zhong1, Lei Zhao4, Yongqiang Ji1
1State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
2Shenzhen BTR New Energy Technology Institute Co., Ltd, Shenzhen 518118, China
3Leyard Optoelectronic Co., Ltd, Beijing 100091, China
4School of Electronic Engineering, Lanzhou City University, Lanzhou 730070, China

Tài liệu tham khảo

Kovalenko, 2017, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science, 358, 745, 10.1126/science.aam7093 Yang, 2023, Towards micro-PeLED displays, Nat. Rev. Mater., 1 Ji, 2020, Highly stable Na: CsPb (Br, I) 3@ Al 2 O 3 nanocomposites prepared by a pre-protection strategy, Nanoscale, 12, 6403, 10.1039/D0NR00069H Yan, 2019, LEDs using halide perovskite nanocrystal emitters, Nanoscale, 11, 11402, 10.1039/C9NR03533H Xu, 2019, A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes, Mater. Today Nano, 6 Kim, 2022, Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes, Nat. Nanotechnol., 17, 590, 10.1038/s41565-022-01113-4 Song, 2015, Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Adv. Mater., 27, 7162, 10.1002/adma.201502567 Du, 2017, High-quality CsPbBr 3 perovskite nanocrystals for quantum dot light-emitting diodes, RSC Adv., 7, 10391, 10.1039/C6RA27665B Xu, 2023, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics, Adv. Energy Mater., 13, 10.1002/aenm.202203911 Shangguan, 2020, The stability of metal halide perovskite nanocrystals—a key issue for the application on quantum-dot-based micro light-emitting diodes display, Nanomaterials, 10, 1375, 10.3390/nano10071375 Xu, 2020, Hysteresis and instability predicted in moisture degradation of perovskite solar cells, ACS Appl. Mater. Interfaces, 12, 48882, 10.1021/acsami.0c17323 Ji, 2021, Trioctylphosphine-assisted pre-protection low-temperature solvothermal synthesis of highly stable CsPbBr3/TiO2 nanocomposites, J. Phys. Chem. Lett., 12, 3786, 10.1021/acs.jpclett.1c00693 Wang, 2022, The influence of compression on the lattice stability of α-FAPbI 3 revealed by numerical simulation, New J. Chem., 46, 16130, 10.1039/D2NJ01711C Lu, 2020, Doping and ion substitution in colloidal metal halide perovskite nanocrystals, Chem. Soc. Rev., 49, 4953, 10.1039/C9CS00790C Wang, 2017, High‐performance CsPb1− xSnxBr3 perovskite quantum dots for light‐emitting diodes, Angew. Chem., 129, 13838, 10.1002/ange.201706860 Begum, 2017, Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping, J. Am. Chem. Soc., 139, 731, 10.1021/jacs.6b09575 Zou, 2017, Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes, J. Am. Chem. Soc., 139, 11443, 10.1021/jacs.7b04000 Behera, 2019, Doping the smallest Shannon radii transition metal ion Ni (II) for stabilizing α-CsPbI3 perovskite nanocrystals, J. Phys. Chem. Lett., 10, 7916, 10.1021/acs.jpclett.9b03306 Kim, 2021, Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping, Adv. Funct. Mater., 31, 10.1002/adfm.202102770 Cheng, 2022, Dopant-induced slow spin relaxation in CsPbBr3 perovskite nanocrystals, ACS Energy Lett., 7, 4325, 10.1021/acsenergylett.2c01901 Lu, 2018, Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light‐emitting devices, Adv. Mater., 30, 10.1002/adma.201804691 Zhang, 2023, Influence of Sr doping on the photoelectronic properties of CsPbX 3 (X= Cl, Br, or I): a DFT investigation, Phys. Chem. Chem. Phys., 25, 9592, 10.1039/D2CP05867G Swarnkar, 2018, Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3 (X= Cl, Br, I) perovskites?, ACS Energy Lett., 3, 286, 10.1021/acsenergylett.7b01197 Yao, 2019, Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes, J. Am. Chem. Soc., 141, 2069, 10.1021/jacs.8b11447 Chen, 2021, Highly stable CsPbI3: Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%, Nano Energy, 85, 10.1016/j.nanoen.2021.106033 Yuce, 2022, Improvement of photophysical properties of CsPbBr3 and Mn2+: CsPb (Br, Cl) 3 perovskite nanocrystals by Sr2+ doping for white light-emitting diodes, J. Phys. Chem. C, 126, 11277, 10.1021/acs.jpcc.2c01244 Guan, 2022, Enhanced emission efficiency in doped CsPbBr 3 perovskite nanocrystals: the role of ion valence, J. Mater. Chem. C, 10, 14737, 10.1039/D2TC03442E Dang, 2017, In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals, ACS Nano, 11, 2124, 10.1021/acsnano.6b08324 Kirakosyan, 2019, Mechanistic insight into surface defect control in perovskite nanocrystals: ligands terminate the valence transition from Pb2+ to metallic Pb0, J. Phys. Chem. Lett., 10, 4222, 10.1021/acs.jpclett.9b01587 Xu, 2022, In situ passivation of Pb 0 traps by fluoride acid-based ionic liquids enables enhanced emission and stability of CsPbBr 3 nanocrystals for efficient white light-emitting diodes, Nanoscale, 14, 13779, 10.1039/D2NR03861G Gao, 2022, Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films, Adv. Mater. Kim, 2021, Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes, Nat. Photonics, 15, 148, 10.1038/s41566-020-00732-4 Wang, 2023, Stable FAPbI 3 hydrate structure by kinetics negotiation for solar cells, Sustain. Energy Fuels, 7, 1974, 10.1039/D3SE00062A He, 2023, Effects of solvent vapor atmosphere on photovoltaic performance of perovskite solar cells, Crystals, 13, 549, 10.3390/cryst13040549 Li, 2016, Highly efficient perovskite nanocrystal light‐emitting diodes enabled by a universal crosslinking method, Adv. Mater., 28, 3528, 10.1002/adma.201600064