Compost preparation, chemical analyses and users’ perception in the utilization of water hyacinth, Ethiopia

Springer Science and Business Media LLC - Tập 16 - Trang 1-10 - 2022
Dessie Tibebe1, Kehali Jembere2, Addisu Kidie2, Marelign Adugna2, Teferi Alem2, Gizachew Teshome1
1College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
2College of Agriculture and Environmental Sciences, University of Gondar, Gondar, Ethiopia

Tóm tắt

Lake Tana is the largest freshwater body in Ethiopia. Currently, the lake has been facing alarming environmental degradation and loss of biodiversity due to the invasion of water hyacinth. Although the weed is invasive, it can be converted into various benefits. Hence, this study was conducted in North Eastern Lake Tana, Sheha Gomengie Kebele. The main objective is compost preparation in terms of its drying periods, analyses, and user perception. Physicochemical and nutrient analyses were performed according to the standard procedures. Acid digestion was used for heavy metal analyses. From the result, the pH measurements ranged from 7.619 ± 0.195 to 7.719 ± 0.261, and the moisture content ranged from 38.712 ± 0.680 to 49.60 ± 9.06%. The mean electrical conductivity (EC) values of all treatments of matured compost ranged from 2.780 ± 0.542 to 3.51 ± 0.971 ds/m. The TN values of the matured compost ranged from 0.420 ± 0.379 to 0.754 ± 0.194 on a dry weight basis. The overall mean values of the C:N ratio for all the treatments were 11.60 which is within an acceptable range. A high amount of available P concentrations was observed in all compost treatments which ranged from 2.740 ± 0.190 to 2.940 ± 1.410 g/kg. Moreover, the concentrations of heavy metals in all treatments were below the permissible limit of different agencies and there was also no significant difference in the mean values of analysis of variance at (P < 0.05). Therefore, the prepared compost can be recommended for better agricultural purposes. Considering users’ understanding of compost preparation as an opportunity, converting WH into compost is promising in terms of its rich supply and the possibility of preparing in the dry season where labor is abundant. Therefore, it can be one way of sustainably reducing WH adverse effects on the Lakeshore.

Tài liệu tham khảo

Seadi T, Rutz D, Prassl H, Kottner M, Finsterwalder T, Volk S, Janssen R. Biogas handbook. Esbjerg: University of Southern Denmark Esbjerg; 2008. Chuang YS, Lay CH, Sen B, Chen CC, Gopalakrishnan K, Wu JH, Lin CS, Lin CY. Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation effects of substrate concentration and incubation temperature. Int J Hydrog Energy. 2011;36:14195–203. Yonathan A, Prasetya AR, Pramudono B. Biogas production from water hyacinth (Eicchornia crassipes): study of consistency and pH to biogas production. J Chem Ind Technol. 2013;2(2):211–5. Amare D, Mekuria W, Belay B. Willingness and participation of local communities to manage communal grazing lands in the Lake Tana biosphere, Ethiopia. Soc Nat Resour. 2017;30:674–768. Ayalew W, Mengistou S. Seasonal variability of secondary production of cladocerans and rotifers, and their trophic role in Lake Tana, Ethiopia, a large, turbid, tropical highland lake. Afr J Aquat Sci. 2014. https://doi.org/10.2989/16085914.2014.978835. Shanab SMM, Shalaby EA, Lightfoot DA, El-Shemy HA. Allelopathic effects of water hyacinth (Eichhornia crassipes). PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0013200. Terefe D. (2017). Ethiopia: Rescuing Lake Tana. https://allafrica.com/stories/201708080175.html. Accessed 27 Nov 2018. Wassie A, Minwyelet M, Ayalew W, Dereje T, Kidan W, Assefa A, Engida W. Water hyacinth coverage survey report on Lake Tana. Tech Rep Ser. 2015;1:1–10. Dessie T, Yezbie K, Adane M, Shewaye L. Investigation of spatio-temporal variations of selected water quality parameters and trophic status of Lake Tana for sustainable management, Ethiopia. Microchem J. 2019;148:374–84. Tewachew A, Biadgilgn D, Amare G, Abraha G. Detecting spatiotemporal expansion of water hyacinth (Eichhornia crassipes) in Lake Tana, Northern Ethiopia. J Indian Soc Remote Sens. 2020;1:1–14. Dereje T, Erkie A, Wondie Z, Brehan M. Identification of impacts, some biology of water hyacinth (Eichhornia crassipes), and its management options in Lake Tana, Ethiopia. Net J Agric Sci. 2017;5(1):8–15. Dereje T. Status of Lake Tana commercial fishery, Ethiopia. Int J Aquacult Fish Sci Sci. 2015;1(1):012–20. https://doi.org/10.17352/2455-8400.000003. Sertsu S, Bekele T. Procedures for soil and plant analysis. Addis Ababa: National Soil Research Center, Ethiopian Agricultural Research organization; 2000. Dadi D, Sulaiman H, Leta S. Evaluation of composting and the quality of compost from the source separated municipal solid waste. J Appl Sci Environ Manag. 2012;16:5–10. Teklay T, Nyberg G, Malmer A. Efect of organic inputs from agroforestry species and urea on crop yield and soil properties at Wondo-Genet. Ethiopoa Nutr Cycl Agro Ecosyst. 2006;75:163–73. https://doi.org/10.1007/s10705-006-9020-3. Osoro N, Fanuel K, Naluyange V, Ombori O, John O, Muomc A, Mukaminega D, Morris M, John M. Effects of water hyacinth [Eichhornia crassipes (Mart.) solms] compost on growth and yield of common beans (Phaseolus vulgaris) in Lake Victoria Basin. Eur Int J Sci Technol. 2014;43:173–18. Zeng Y. Evaluating heavy metal contents in nine composts using four digestion methods. Biol Resour Technol. 2004;95:53–5. Pollack M, Favoino E. Heavy metals and organic compounds from wastes used as organic fertilisers, final report, compost—consulting and development technical office for agriculture dip.ling. Austria: Florian Amlinger; 2004. Singh J, Kalamdhad A. Effects of natural zeolite on speciation of heavy metals during agitated pile composting of water hyacinth. Int J Recycl Org Waste Agric. 2014;3:1–17. Singh J, Kalamdhad A. Assessment of compost quality in agitated pile composting of water hyacinth collected from different sources. Int J Recycl Org Waste Agric. 2015;4:175–83. TMECC. Test methods for the examination of composting and composts. Holbrook: Composting Council Research and Education Foundation; 2002. Prasad R, Singh J, Kalamdhad AS. Assessment of nutrients and stability parameters during composting of water hyacinth mixed with cattle manure and sawdust. Res J Chem Sci. 2013;3:70–7. Román P, Martínez M, Pantoja A. Farmer’S compost handbook. Santiago: Food and Agriculture Organization of the United Nations Regional Office for Latin America and the Caribbean; 2015. Cooperband L. The art and science of composting: a resource for farmers and compost producers. Madison: Center for Integrated Agricultural Systems. University of Wisconsin; 2002. Raj D, Antil R. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour Technol. 2011;102:2868–73. Masresha M, Henok K, Lalit I, Stefaan D. Evaluation of compost quality from municipal solid waste integrated with organic additive in Mizan-Aman town, Southwest, Ethiopia. BMC Chem. 2021;15:43. https://doi.org/10.1186/s13065-021-00770-. Muktamar Z, Justisia B, Setyowati N. Quality enhancement of humid tropical soils after application of water hyacinth (Eichornia crassipes) compost. J Agric Technol. 2016;12:1211–27. John M. Production of organic compost from water hyacinth (Eichhornia crassipes) in the Lake Victoria Basin: a lake Victoria research initiative (VicRes). Res Rev J Agric Allied Sci. 2016;5:55–62. Rahel gebeyehu and mulugeta kibret. Microbiological and physico-chemical analysis of compost and its effect on the yield of Kale (Brassica oleracea) in Bahir Dar, Ethiopia. Ethiop J Sci Technol. 2013;6:93–102. FEPA (Federal Environmental Protection Authority of Ethiopia). Guidelines on composting. Addis Ababa: FEPA; 2004. CPHEEO. Manual on municipal solid waste management. New Delhi: Central Public Health and Environmental Engineering Organization; 2000. p. 250–4. William B. Compost quality standards & guideline, final report. New York: New York State Association of Recyclers; 2000. Canadian Council of Ministers of the Environment (CCME). Guidelines for compost quality. Manitoba: Canadian council of ministers of the environment; 2005. p. 11–6. Carter MR, Gregorich EG. Soil sampling and methods of analysis. 2nd ed. USA: Canadian Soil Science Society, CRC Press; 2008. Sarika D, Prasad R, Singh J, Vishan I, Varma VS, Kalamdhad AS. Study of physico-chemical and biochemical parameters during rotary drum composting of water hyacinth. Int J Recycl Org Waste Agric. 2014;3(63):1–10.