Compositional effect on water adsorption on metal halide perovskites
Tài liệu tham khảo
Noh, 2013, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett., 13, 1764, 10.1021/nl400349b
D’Innocenzo, 2014, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun., 5, 3586, 10.1038/ncomms4586
Wehrenfennig, 2014, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater., 26, 1584, 10.1002/adma.201305172
Xing, 2013, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344, 10.1126/science.1243167
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591
Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509
Chen, 2014, Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136, 622, 10.1021/ja411509g
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Jeon, 2018, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells, Nat. Energy, 3, 682, 10.1038/s41560-018-0200-6
Jiang, 2019, Surface passivation of perovskite film for efficient solar cells, Nat. Photon., 13, 460, 10.1038/s41566-019-0398-2
National Renewable Energy Laboratory (NREl), Best Research-CellEfficiencies. https://www.nrel.gov/pv/cell-efficiency.html.
Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Bryant, 2016, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells, Energy Environ. Sci., 9, 1655, 10.1039/C6EE00409A
Berhe, 2016, Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci., 9, 323, 10.1039/C5EE02733K
Leijtens, 2015, Stability of metal halide perovskite solar cells, Adv. Energy Mater., 5, 1500963, 10.1002/aenm.201500963
Wang, 2017, Stability of perovskite solar cells: a prospective on the substitution of the A Cation and X Anion, Angew. Chem. Int. Ed., 56, 1190, 10.1002/anie.201603694
Li, 2017, Light-Induced degradation of CH3NH3PbI3 hybrid perovskite thin film, J. Phys. Chem. C, 121, 3904, 10.1021/acs.jpcc.6b11853
Juarez-Perez, 2016, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis, Energy Environ. Sci., 9, 3406, 10.1039/C6EE02016J
Li, 2016, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chem. Mater., 28, 284, 10.1021/acs.chemmater.5b04107
Slotcavage, 2016, Light-induced phase segregation in halide-perovskite absorbers, ACS Energy Lett., 1, 1199, 10.1021/acsenergylett.6b00495
Jiang, 2018, Stabilizing lead-free all-inorganic tin halide perovskites by ion exchange, J. Phys. Chem. C, 122, 17660, 10.1021/acs.jpcc.8b04013
Correa-Baena, 2017, Promises and challenges of perovskite solar cells, Science, 358, 739, 10.1126/science.aam6323
Hall, 2017, The role of water in the reversible optoelectronic degradation of hybrid perovskites at low pressure, J. Phys. Chem. C, 121, 25659, 10.1021/acs.jpcc.7b06402
Niu, 2014, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells, J. Mater. Chem. A, 2, 705, 10.1039/C3TA13606J
Frost, 2014, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett., 14, 2584, 10.1021/nl500390f
Christians, 2015, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, J. Am. Chem. Soc., 137, 1530, 10.1021/ja511132a
Yang, 2015, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques, ACS Nano, 9, 1955, 10.1021/nn506864k
Lin, 2017, 3D In Situ ToF-SIMS imaging of perovskite films under controlled humidity environmental conditions, Adv. Mater. Interface, 4, 1600673, 10.1002/admi.201600673
Zhang, 2015, Ab initio study of interaction of water, hydroxyl radicals, and hydroxide ions with CH3NH3PbI3 and CH3NH3PbBr 3 surfaces, J. Phys. Chem. C, 119, 22370, 10.1021/acs.jpcc.5b07000
Zhang, 2016, Ab initio static and dynamic study of CH3NH3PbI3 degradation in the presence of water, hydroxyl radicals, and hydroxide ions, RSC Adv., 6, 76938, 10.1039/C6RA12781A
Xue, 2017, First-principles study on the initial decomposition process of CH3NH3PbI3, J. Chem. Phys., 147, 10.1063/1.4995496
Koocher, 2015, Polarization dependence of water adsorption to CH3NH3PbI3 (001) surfaces, J. Phys. Chem. Lett., 6, 4371, 10.1021/acs.jpclett.5b01797
Tong, 2015, Uncovering the veil of the degradation in perovskite CH3NH3PbI3 upon humidity exposure: a first-principles study, J. Phys. Chem. Lett., 6, 3289, 10.1021/acs.jpclett.5b01544
Mosconi, 2015, Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water, Chem. Mater., 27, 4885, 10.1021/acs.chemmater.5b01991
Caddeo, 2017, Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water, ACS Nano, 11, 9183, 10.1021/acsnano.7b04116
Cheacharoen, 2018, Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling, Energy Environ. Sci., 11, 144, 10.1039/C7EE02564E
Poorkazem, 2018, Compositional engineering to improve the stability of lead halide perovskites: a comparative study of cationic and anionic dopants, ACS Appl. Energy Mater., 1, 181, 10.1021/acsaem.7b00065
Yi, 2016, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells, Energy Environ. Sci., 9, 656, 10.1039/C5EE03255E
Kulbak, 2016, Cesium enhances long-term stability of lead bromide perovskite-based solar cells, J. Phys. Chem. Lett., 7, 167, 10.1021/acs.jpclett.5b02597
Ono, 2017, Progress on perovskite materials and solar cells with mixed cations and halide anions, ACS Appl. Mater. Interfaces, 9, 30197, 10.1021/acsami.7b06001
Ma, 2018, Substituting Cs for MA on the surface of MAPbI3 perovskite: A first-principles study, Comp. Mater. Sci., 150, 411, 10.1016/j.commatsci.2018.04.042
Jiang, 2018, Air molecules in XPbI3 (X=MA, FA, Cs) perovskite: A degradation mechanism based on first-principles calculations, J. Appl. Phys., 124, 10.1063/1.5037005
He, 2018, Ab initio study of the moisture stability of lead iodine perovskites, J. Phys.: Condens. Matter., 30
U.G. Jong, C.J. Yu, G.C. Ri, A.P. McMahon, Nicholas M. Harrison, P.R.F. Barnes, A. Walsh, Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites, J. Mater. Chem. A 6 (2018) 1067–1074.
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1998, Perdew, burke, and ernzerhof reply, Phys. Rev. Lett., 80, 10.1103/PhysRevLett.80.891
Manz, 2016, Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology, RSC Adv., 6, 47771, 10.1039/C6RA04656H
Limas, 2016, Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials, RSC Adv., 6, 45727, 10.1039/C6RA05507A
Manz, 2017, Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders, RSC Adv., 7, 45552, 10.1039/C7RA07400J
Rohling, 2019, Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis, J. Phys. Chem. C, 123, 2843, 10.1021/acs.jpcc.8b08934
Chen, 2019, Bond orders of the diatomic molecules, RSC Adv., 9, 17072, 10.1039/C9RA00974D
Li, 2019, Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells, Nat. Energy, 4, 408, 10.1038/s41560-019-0382-6
Zhou, 2019, Enhanced incorporation of guanidinium in formamidinium-based perovskites for efficient and stable photovoltaics: the role of Cs and Br, Adv. Funct. Mater., 29, 1905739, 10.1002/adfm.201905739
Man, 2020, First principle studies of oxygen reduction reaction on N doped graphene: Impact of N concentration, position and co-adsorbate effect, Appl. Surf. Sci., 510, 10.1016/j.apsusc.2020.145470
Onen, 2018, Onset of vertical bonds in new GaN multilayers: beyond van der Waals solids, Nanoscale, 10, 21842, 10.1039/C8NR05626A
Liu, 2017, Scaling relations for acidity and reactivity of zeolites, J. Phys. Chem. C, 121, 23520, 10.1021/acs.jpcc.7b08176
Rohling, 2018, Electronic structure analysis of the diels-alder cycloaddition catalyzed by alkali-exchanged faujasites, J. Phys. Chem. C, 122, 14733, 10.1021/acs.jpcc.8b04409
T. Chen; T.A. Manz, Identifying misbonded atoms in the 2019 CoRE metal–organic framework database. RSC Adv. 10 (2020) 26944-26951.
C. Onwudinanti; I. Tranca; T. Morgan; S. Tao, Tin, The Enabler-Hydrogen Diffusion into Ruthenium. Nanomaterials (Basel) 9 (2019).
Kye, 2018, Critical role of water in defect aggregation and chemical degradation of perovskite solar cells, J. Phys. Chem. Lett., 9, 2196, 10.1021/acs.jpclett.8b00406
I. Tranca; K. Schroeder, Density functional study of molecular adsorption on the CU (011) surface: oxalic acid and 2, 5 pyrazine di-carboxylic acid. (2011).
Mosconi, 2016, Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics, ACS Energy Lett., 1, 182, 10.1021/acsenergylett.6b00108
Tao, 2019, Absolute energy level positions in tin- and lead-based halide perovskites, Nat. Commun., 10, 2560, 10.1038/s41467-019-10468-7
Guo, 2019, Mechanical Properties of Formamidinium Halide Perovskites FABX3 (FA = CH(NH2)2; B = Pb, Sn; X = Br, I) by First-Principles, Chinese Phys. Lett., 36, 10.1088/0256-307X/36/5/056201
Allred, 1961, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem., 17, 215, 10.1016/0022-1902(61)80142-5
Cao, 2020, Alkali-cation-enhanced benzylammonium passivation for efficient and stable perovskite solar cells fabricated through sequential deposition, J. Mater. Chem. A, 10.1039/D0TA04680A
Caddeo, 2019, Hydrophilicity and water contact angle on methylammonium lead iodide, Adv. Mater. Interface 6, 1801173
Balestra, 2020, Efficient modelling of ion structure and dynamics in inorganic metal halide perovskites, J. Mater. Chem. A, 8, 11824, 10.1039/D0TA03200J
Mattoni, 2016, Temperature evolution of methylammonium trihalide vibrations at the atomic scale, J. Phys. Chem. Lett., 7, 529, 10.1021/acs.jpclett.5b02546
R.E. Wasylishen; O.A.M. Knop, J.B., Cation rotation in methylammonium lead halides. Solid State Commun. 56 (1985) 581-582.
Quarti, 2014, Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation, Chem. Mater., 26, 6557, 10.1021/cm5032046
Mosconi, 2014, Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation, Phys. Chem. Chem. Phys., 16, 16137, 10.1039/C4CP00569D
Mattoni, 2015, Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: the role of temperature, J. Phys. Chem. C, 119, 17421, 10.1021/acs.jpcc.5b04283
Pathak, 2020, Mass diffusivity and thermal conductivity estimation of chloride-based salt hydrates for thermo-chemical heat storage: A molecular dynamics study using the reactive force field, Int. J. Heat Mass Transfer, 149, 10.1016/j.ijheatmasstransfer.2019.119090
van Duin, 2001, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9397, 10.1021/jp004368u
van Duin, 2008, ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in Yttria-Stabilized Zirconia, J. Phys. Chem. C, 112, 3133, 10.1021/jp076775c