Composition formulas of Cu-Ni industrial alloy specifications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hong HL, Wang Q, Dong C, Liaw PK. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys. Sci Rep, 2014, 4: 7065
Xu QJ, Wan ZY, Yin RH, et al. Photoelectrochemical study of influence factors on corrosion resistance of cupronickel B30 in simulated water. Acta Chimica Cinica, 2007, 65: 3–1986
Zheng JT, Zhang SP, Zhou XJ, Zeng E, Hu ZZ. Comparative study of erosion-corrosion of B10 and B30 cupronickel. Equip Enviorn Eng, 2010, 7: 3–43
Dey GK, Mukhopadhyay P. Precipitation in the Ni-Cu-base alloy monel K-500. Mater Sci Eng, 1986, 84: 3–189
Han C, Zhou JT, Fan ZK. Effect of heat treatment on microstructure and hardness of monel alloy containing silicon. Trans Mater Heat Treat, 2009, 30: 3–109
Wang HR, Tian XL, Teng XY, et al. Short-range and medium-range order in liquid Cu-Ni alloy. Chin Phys Lett, 2002, 19: 3–235
Claus H, Tranchita CJ. Magentism and atomic short-range order in V-Fe and Cu-Ni. J Phys Colloques, 1978, 39: C6-858-C6-859
Lohofer G, Brillo J, Egry I. Thermophysical properties of undercooled liquid Cu-Ni alloys. Int J Thermophys, 2004, 25: 3–1550
Deutsches KL. Chemical Colourings of Copper and Copper Alloys. Sydney: Copper and Brass Information Centre, 1965
Davis JR. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys. Ohio: ASM international, 2000
Reinhard L, Schönfeld B, Kostorz G, Bührer W. Short range order in a-brass. Phys Rev B, 1990, 44: 3–1734
Rossiter P L. Effects of co-existing atomic and magnetic clustering on electrical resistivity Cu-Ni alloys. J Phys F Metal Phy, 1981, 11: 3–2118
Bessiere M, Lefebvre S, Calvayrac Y. X-ray diffraction study of short-range order in a disordered Au3Cu alloy. Acta Cryst, 1983, B39: 145–153
Aalders J, van Dijk C, Radelaar S. Neutron scattering study of shortrange clustering in CuNi(Fe) alloys. J Phy F Met Phys, 1984, 14: 3–2815
Chen ZY, Dai GT. Comparative study of dispersion relations of onedimensional diatomic chain lattice vibration with different neighbor interactions. J China Three Gorges Univ, 2010, 32: 3–104
Stolz UK, Arpshofen I, Sommer F, Predel B. Determination of the enthalpy of mixing of liquid alloys using a high-temperature mixing calorimeter. J Phase Equilib, 1993, 14: 3–478
Liu HB, Chen KY, Hu ZQ. Application of the embedded-atom method to liquid binary Cu-Ni alloys. J Mater Sci Technol, 1997, 13: 3–122
Vrijen J. Netherlands Energy Research Foundation ECN Petten Report ECN-31, 1977
Dong C, Wang Q, Qiang JB, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. J Phys D Appl Phys, 2007, 40: R273–R291
Han G, Qiang JB, Li FW, et al. The e/a values of ideal metallic glasses in relation to cluster formulae. Acta Mater, 2011, 59: 3–5926
Hume-Rothery W, Raynor G V. The Structure of Metals and Alloys. 4th ed. London: Institute of Metals, 1962
Xie YQ, Qu ZT, Ma LY, Xie ZC. The electronic structure and thermal electricity, corrosion resistance and strength of Cu-Ni alloys. J Funct Mater, 1977, 42–49
Gong XG, Kumar V. Enhanced stability of magic cluster: a case study of icosahedral Al12X, X=B, Al, Ga, C, Si, Ge, Ti, As. Phys Rev Lett, 1993, 70: 3–2081
Knight WD, Clemenger K, Heer WA, et al. Electronic shell structure and abundances of sodium clusters. Phys Rev Lett, 1984, 52: 3–2144
Chou MY, Cohen ML. Electronic shell structure in simple metal clusters. Phys Rev Lett, 1986, 113A: 420–424
Mizutani U, Sato H, Inukai M, Zijlstra ES. e/a Determination for 4d- and 5d-transition metal elements and their intermetallic compounds with Mg, Al, Zn, Cd and In. Philos Mag, 2013, 93: 3–3390
Zhang J, Wang Q, Wang YM, et al. Revelation of solid solubility limit Fe/Ni=1/12 in corrosion-resistant Cu–Ni alloys and relevant cluster model. J Mater Res, 2010, 25: 3–336
Wang Q, Zha QF, Liu EX, et al. Composition design of high strength martensitic precipitation hardening stainless steels based on a cluster model. Acta Metall Sin, 2012, 48: 3–1206