Composition and crystal structure parameters of single crystals (Bi, Pb)2Sr2(Ca1−xRx)Cu2O8+δ (R = Y, Er, Ho, Tm, and Yb)

Journal of Materials Research - Tập 8 - Trang 1791-1797 - 1993
A. S. Ilyushin1, L. Shi2, L. I. Leonyuk3, B. M. Mustafa1, I. A. Nikanorova1, S. V. Red’ko1, Y. Jia2, A. G. Vetkin3, G. Zhou2, I. V. Zubov1
1Physics Department, Moscow State University, Moscow, Russia;
2Structure Research Laboratory, University of Science and Technology of China, Hefei, People's Republic of China
3Geology Department, Moscow State University, Moscow, Russia

Tóm tắt

To correlate structural and compositional parameters in the bismuth 2212 system, single crystals with the composition (Bi1−yPby)2Sr2(Ca1−xRx)Cu2O8+δ (R = Y, Er, Ho, Tm, and Yb; y = 0, 0.1; 0 ≤ x ≤ 0.5) have been studied at room temperature by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The main results are as follows: (i) The actual content, x, of R (R = Y, Er) in samples is in significant excess over its content x′ in the melt for x′ < 0.5. The opposite effect (but several times smaller) takes place for Ca. At x′ = 0.5, the x value practically coincides with x′. (ii) For all R under examination and x′ = 0.1, the value of x is within the limits of 0.43 ≤ x ≤ 0.51; i.e., x exceeds x′ several times. (iii) The total content of Ca, R (R = Y, Er), and Sr is close to 3 through the whole range 0 ≤ x′ ≤ 0.5. At x′ < 0.5 Ca is partly substituted for Sr, while R occupies only Ca crystallographic positions. Thus the actual formula of the samples is (Bi1-yPby)2+∊Sr2-z(Ca1+z-xRx)Cu2O8+δ. (iv) The evidence was received that the nonlinear dependence c(x) at x < 0.5 is connected with the partial substitution of Sr with Ca. The dependence of c, namely on the R = Y content in the denoted range of x, is close to linear with the slope ∂c/∂x = −0.67(2) Å/at.

Tài liệu tham khảo

K. Takamuku, K. Ikeda, T. Takata, T. Miyatake, I. Tomeno, S. Gotoh, N. Koshizuka, and S. Tanaka, Physica C 185–189, 451 (1991). Y. Iwai, N. Sato, T. Sasagawa, H. Sato, and M. Takata, Physica C 185–189, 641 (1991). S. Adachi, H. Adachi, K. Setsume, and K. Wasa, Physica C 185–189, 671 (1991). F. Munakata, T. Kawano, H. Yamauchi, and Y. Inoue, Physica C 185–189, 795 (1991). N. Kuroda, R. Yoshizaki, J. Fujikami, M. Akamatu, T. Ishigaki, and H. Asano, Physica C 185–189, 807 (1991). A. Ono, Jpn. J. Appl. Phys. 28, L493 (1989). C. N.R. Rao, R. Nagarajan, R. Vijayaraghavan, N. Y. Vasanthacharyan, G.V. Kulkarni, G. Ranga Rao, A.M. Umarji, P. Somasundaram, G. N. Subbanna, A. R. Raju, A. K. Sood, and N. Chandrabhas, Supercond. Sci. Technol. 3, 242 (1990). V. Manivannan, J. Gopalakrishnan, and C. N. R. Rao, Phys. Rev. B 43, 8686 (1991). R. Kiemel, W. Wischert, and S. Kemmler-Sack, Phys. Status Solidi B 156, 339 (1989). J. M. Tarascon, P. Barboux, G. W. Hull, R. Ramesh, L. H. Greene, M. Giroud, M. S. Hedge, and W. R. McKinnon, Phys. Rev. B 39, 4316 (1989). E.V. Sampathkumaran, M.D. Sastry, and R.M. Kadam, Physica C 159, 267 (1989). A. K. Ganguli, R. Nagarajan, K. S. Nanjundaswamy, and C. N. R. Rao, Mater. Res. Bull. XXIV, 103 (1989). T. Tamegai, K. Koda, K. Suzuki, M Ichihara, F. Sakai, and Y. lye, Jpn. J. Appl. Phys. 28, L112 (1989). R. Yochizaki, J. Fujikami, T. Ishigaki, and H. Asano, Physica C 171, 315 (1990). A. Sequeira, H. Rajagopal, P.V.P.S.S. Sastry, J.V. Yakhmi, and R.M. Iyer, Physica B 174, 367 (1991). G.S. Grader, E.M. Gyorgy, P.K. Gallagher, H.M. O’Bryan, D. W. Johnson, Jr., S. Sunshine, S. M. Zahurak, S. Jin, and R. C. Sherwood, Phys. Rev. B 38, 757 (1988). A. Moto, A. Morimoto, and T. Shimizu, Jpn. J. Appl. Phys. 28, LI 144 (1989). T. Shweitzer, R. Müller, P. Bohac, and L.J. Gaucker, Supercond. II, 23 (1990). H. Sasakura, K. Nakahigashi, S. Minamigawa, M. Kogachi, S. Nakanishi, N. Fukuoka, and A. Yanase, Jpn. J. Appl. Phys. 28, L1769 (1989). R. D. Shannon, Acta Crystallogr. A 32, 751 (1976). Y. Zhang, Inorg. Chem. 21, 3866 (1982).