Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries

Dheeraj Kumar Maurya1, Ragupathy Dhanusuraman2, Zhanhu Guo3, Subramania Angaiah1
1Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
2Nano-Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
3Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29. https://doi.org/10.1038/nchem.2085

Buonomenna MG, Bae J, (2017) Sodium-ion batteries: a realistic alternative to lithium-ion batteries? Nanosci Nanotechnol Asia 7(2):139–154. https://doi.org/10.2174/2210681206666161019145001

Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4):18013. https://doi.org/10.1038/natrevmats.2018.13

Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage, WIREs Energy and Environment 4(3):253–278. https://doi.org/10.1002/wene.136

Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries, Advanced Functional Materials 23(8):947–958. https://doi.org/10.1002/adfm.201200691

Murugadoss V, Arunachalam S, Elayappan V, Angaiah S (2018) Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics 24(12):4071–4080. https://doi.org/10.1007/s11581-018-2540-4

Solarajan AK, Murugadoss V, Angaiah S (2016) Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl Mater Today 5:33–40. https://doi.org/10.1016/j.apmt.2016.09.002

Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294(1):8–15. https://doi.org/10.1016/j.memsci.2007.01.025

Kalyana Sundaram NT, Subramania A (2007) Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim Acta 52(15):4987–4993. https://doi.org/10.1016/j.electacta.2007.01.066

Matios E, Wang H, Wang C, Li W (2019) Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review. Ind Eng Chem Res 58(23):9758–9780. https://doi.org/10.1021/acs.iecr.9b02029

Zhou C, Bag S, Thangadurai V (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3(9):2181–2198. https://doi.org/10.1021/acsenergylett.8b00948

Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):16013. https://doi.org/10.1038/natrevmats.2016.13

Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115

Keller M, Varzi A, Passerini S (2018) Hybrid electrolytes for lithium metal batteries. J Power Sources 392:206–225. https://doi.org/10.1016/j.jpowsour.2018.04.099

Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed Engl 57(1):102–120. https://doi.org/10.1002/anie.201703772

Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47(6):2020–2064. https://doi.org/10.1039/C7CS00464H

Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9):2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16(4):168–177. https://doi.org/10.1016/j.cossms.2012.04.002

Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614. https://doi.org/10.1039/C6CS00776G

Tong Z, Wang S-B, Liao Y-K, Hu S-F, Liu R-S (2020) Interface between solid-state electrolytes and Li-metal anodes: issues, materials, and processing routes. ACS Appl Mater Interfaces 12(42):47181–47196. https://doi.org/10.1021/acsami.0c13591

Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33:188–215. https://doi.org/10.1016/j.ensm.2020.08.014

Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R (2019) Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application 31(21):1808393. https://doi.org/10.1002/adma.201808393

Lu Y, Li L, Zhang Q, Niu Z, Chen J (2018) Electrolyte and interface engineering for solid-state sodium batteries. Joule 2(9):1747–1770. https://doi.org/10.1016/j.joule.2018.07.028

Tarascon J-M (2020) Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4(8):1616–1620. https://doi.org/10.1016/j.joule.2020.06.003

Li M, Wang C, Chen Z, Xu K, Lu J (2020) New concepts in electrolytes. Chem Rev 120(14):6783–6819. https://doi.org/10.1021/acs.chemrev.9b00531

Liang J, Luo J, Sun Q, Yang X, Li R, Sun X (2019) Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater 21:308–334. https://doi.org/10.1016/j.ensm.2019.06.021

Qiao L, Judez X, Rojo T, Armand M, Zhang H (2020) Review–polymer electrolytes for sodium batteries. J Electrochem Soc 167(7) 070534. https://doi.org/10.1149/1945-7111/ab7aa0

Ye F, Liao K, Ran R, Shao Z (2020) Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy Fuels 34(8):9189–9207. https://doi.org/10.1021/acs.energyfuels.0c02111

Zhang H, Chen F, Carrasco J (2021) Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Mater 36:77–90. https://doi.org/10.1016/j.ensm.2020.12.014

Maurya DK, Murugadoss V, Guo Z, Angaiah S (2021) Designing Na2Zn2TeO6-embedded 3D-nanofibrous poly(vinylidenefluoride)-co-hexafluoropropylene-based nanohybrid electrolyte via electrospinning for durable sodium-ion capacitors. ACS Appl Energy Mater 4(8):8475–8487. https://doi.org/10.1021/acsaem.1c01682

Voropaeva DY, Novikova SA, Yaroslavtsev AB (2020) Polymer electrolytes for metal-ion batteries. Russ Chem Rev 89(10):1132–1155. https://doi.org/10.1070/rcr4956

Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. 7(522). https://doi.org/10.3389/fchem.2019.00522

Wang Y, Song S, Xu C, Hu N, Molenda J, Lu L (2019) Development of solid-state electrolytes for sodium-ion battery–a short review. Nano Mater Sci 1(2):91–100. https://doi.org/10.1016/j.nanoms.2019.02.007

Han L, Lehmann ML, Zhu J, Liu T, Zhou Z, Tang X, Heish C-T, Sokolov AP, Cao P, Chen XC, Saito T (2020) Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries. Front Energy Res 8(202). https://doi.org/10.3389/fenrg.2020.00202

Tang S, Guo W, Fu Y (2021) Advances in composite polymer electrolytes for lithium batteries and beyond. Adv Energy Mater 11(2):2000802. https://doi.org/10.1002/aenm.202000802

Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu Y-S, Chen L (2018) Solid-state sodium batteries. Adv Energy Mater 8(17):1703012. https://doi.org/10.1002/aenm.201703012

Wehner LA, Mittal N, Liu T, Niederberger M (2021) Multifunctional batteries: flexible, transient, and transparent. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c01318

Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan C-W, Armand M, Chen L, Xu K, Shi S (2020) Mobile ions in composite solids. Chem Rev 120(9):4169–4221. https://doi.org/10.1021/acs.chemrev.9b00760

Zhang S, Yao Y, Yu Y (2021) Frontiers for room-temperature sodium–sulfur batteries. ACS Energy Lett 6(2):529–536. https://doi.org/10.1021/acsenergylett.0c02488

Boaretto N, Meabe L, Martinez-Ibañez M, Armand M, Zhang H (2020) Review–polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid. J Electrochem Soc 167(7):070524. https://doi.org/10.1149/1945-7111/ab7221

Choudhury S, Stalin S, Vu D, Warren A, Deng Y, Biswal P, Archer LA (2019) Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat Commun 10(1):4398. https://doi.org/10.1038/s41467-019-12423-y

Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu Y-S, Zhou Z, Li H, Huang X, Chen L (2016) A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A 4(41):15823–15828. https://doi.org/10.1039/C6TA07590H

Feng J, Wang L, Chen Y, Wang P, Zhang H, He X (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 8(1):2. https://doi.org/10.1186/s40580-020-00252-5

Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300. https://doi.org/10.1016/j.ensm.2020.10.006

Li S, Zhang S-Q, Shen L, Liu Q, Ma J-B, Lv W, He Y-B, Yang Q-H (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 7(5):1903088. https://doi.org/10.1002/advs.201903088

Qian S, Chen H, Wu Z, Li D, Liu X, Tang Y, Zhang S (2021) Designing ceramic/polymer composite as highly ionic conductive solid-state electrolytes. Batteries Supercaps 4(1):39–59. https://doi.org/10.1002/batt.202000149

Lim YJ, Han J, Kim HW, Choi Y, Lee E, Kim Y (2020) An epoxy-reinforced ceramic sheet as a durable solid electrolyte for solid state Na-ion batteries. J Mater Chem A 8(29):14528–14537. https://doi.org/10.1039/D0TA06024K

Kim J-K, Lim YJ, Kim H, Cho G-B, Kim Y (2015) A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 8(12):3589–3596. https://doi.org/10.1039/C5EE01941A

Cheng M, Qu T, Zi J, Yao Y, Liang F, Ma W, Yang B, Dai Y, Lei Y (2020) A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology 31(42):425401. https://doi.org/10.1088/1361-6528/aba059

Coustan L, Tarascon J-M, Laberty-Robert C (2019) Thin fiber-based separators for high-rate sodium ion batteries. ACS Appl Energy Mater 2(12):8369–8375. https://doi.org/10.1021/acsaem.9b01821

Chen M, Zhang Y, Xing G, Tang Y (2020) Building high power density of sodium-ion batteries: importance of multidimensional diffusion pathways in cathode materials. Front Chem 8(152). https://doi.org/10.3389/fchem.2020.00152

Eshetu GG, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, Passerini S (2016) Comprehensive insights into the reactivity of electrolytes based on sodium ions. Chem Sus Chem 9(5):462–471. https://doi.org/10.1002/cssc.201501605

Zhang H, Hasa I, Passerini S (2018) Sodium-ion batteries: beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater 8(17):1870082. https://doi.org/10.1002/aenm.201870082

Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114(23):11788–11827. https://doi.org/10.1021/cr500232y

Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ion 312:8–16. https://doi.org/10.1016/j.ssi.2017.10.004

Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52(3):686–694. https://doi.org/10.1021/acs.accounts.8b00566

Chen S, Feng F, Che H, Yin Y, Ma Z-F (2021) High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem Eng J 406:126736. https://doi.org/10.1016/j.cej.2020.126736

Zhang X, Wang X, Liu S, Tao Z, Chen J (2018) A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res 11(12):6244–6251. https://doi.org/10.1007/s12274-018-2144-3

Chen S, Che H, Feng F, Liao J, Wang H, Yin Y, Ma Z-F (2019) Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries. ACS Appl Mater Interfaces 11(46):43056–43065. https://doi.org/10.1021/acsami.9b11259

Yi Q, Zhang W, Li S, Li X, Sun C (2018) Durable sodium battery with a flexible Na3Zr2Si2PO12–PVDF–HFP composite electrolyte and sodium/carbon cloth anode. ACS Appl Mater Interfaces 10(41):35039–35046. https://doi.org/10.1021/acsami.8b09991

Devi C, Gellanki J, Pettersson H, Kumar S (2021) High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci Rep 11(1):20180. https://doi.org/10.1038/s41598-021-99663-5

Yu X, Xue L, Goodenough JB, Manthiram A (2021) Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv Func Mater 31(2):2002144. https://doi.org/10.1002/adfm.202002144

Zhang Z, Xu K, Rong X, Hu Y-S, Li H, Huang X, Chen L (2017) Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. J Power Sources 372:270–275. https://doi.org/10.1016/j.jpowsour.2017.10.083

Yu X, Xue L, Goodenough JB, Manthiram A (2019) A high-performance all-solid-state sodium battery with a poly(ethylene oxide)–Na3Zr2Si2PO12 composite electrolyte. ACS Mater Lett 1(1):132–138. https://doi.org/10.1021/acsmaterialslett.9b00103

Wu J-F, Yu Z-Y, Wang Q, Guo X (2020) High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Mater 24:467–471. https://doi.org/10.1016/j.ensm.2019.07.012

Koduru HK, Marinov YG, Hadjichristov GB, Scaramuzza N (2019) Characterization of polymer/liquid crystal composite based electrolyte membranes for sodium ion battery applications. Solid State Ion 335:86–96. https://doi.org/10.1016/j.ssi.2019.02.021

Hiraoka K, Kato M, Kobayashi T, Seki S (2020) Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries. J Phys Chem C 124(40):21948–21956. https://doi.org/10.1021/acs.jpcc.0c05334

Verma H, Mishra K, Rai DK (2020) Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. J Solid State Electrochem 24(3):521–532. https://doi.org/10.1007/s10008-019-04490-4

Wang Y, Wang Z, Sun J, Zheng F, Kotobuki M, Wu T, Zeng K, Lu L (2020) Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous poly(ethylene oxide) for all-solid-state Na battery. J Power Sources 454:227949. https://doi.org/10.1016/j.jpowsour.2020.227949

Xie D, Zhang M, Wu Y, Xiang L, Tang Y (2020) A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Func Mater 30(5):1906770. https://doi.org/10.1002/adfm.201906770

Serra Moreno J, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702. https://doi.org/10.1016/j.jpowsour.2013.09.137

Dinachandra Singh M, Dalvi A (2021) Ionic transport in NASICON-polymer hybrids: an assessment using X-ray photoelectron spectroscopy. Appl Surf Sci 536:147792. https://doi.org/10.1016/j.apsusc.2020.147792

Chandra A, Chandra A, Thakur K (2016) Synthesis and ion conduction mechanism on hot-pressed sodium ion conducting nano composite polymer electrolytes. Arab J Chem 9(3):400–407. https://doi.org/10.1016/j.arabjc.2013.07.014

Chandra A, Chandra A, Thakurb K (2012) Na+ ion conducting hot-pressed nano composite polymer electrolytes. Port Electrochim Acta 30:81–88. https://doi.org/10.4152/pea.201202081

Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177. https://doi.org/10.1002/app.45177

Arunachalam S, Kirubasankar B, Pan D, Liu H, Yan C, Guo Z, Angaiah S (2020) Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. https://doi.org/10.1016/j.gee.2020.07.021

Sundaram NTK, Subramania A (2007) Microstructure of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process. J Membr Sci 289(1):1–6. https://doi.org/10.1016/j.memsci.2006.12.002

Maurya DK, Murugadoss V, Angaiah S (2019) All-solid-state electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/Li7.1La3Ba0.05Zr1.95O12 nanohybrid membrane electrolyte for high-energy Li-ion capacitors. J Phys Chem C 123(50):30145–30154. https://doi.org/10.1021/acs.jpcc.9b09264

Maurya DK, Balan B, Murugadoss V, Yan C, Angaiah S (2020) A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors. Mater Today Commun 25:101497. https://doi.org/10.1016/j.mtcomm.2020.101497

Solarajan AK, Murugadoss V, Angaiah S (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7(1):45390. https://doi.org/10.1038/srep45390

Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f

Villaluenga I, Bogle X, Greenbaum S, Gil de Muro I, Rojo T, Armand M (2013) Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes. J Mater Chem A 1(29):8348–8352. https://doi.org/10.1039/C3TA11290J

Bag S, Zhou C, Reid S, Butler S, Thangadurai V (2020) Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J Power Sources 454:227954. https://doi.org/10.1016/j.jpowsour.2020.227954

Kumar D, Gohel K, Kanchan DK, Mishra K (2020) Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci Mater Electron 31(16):13249–13260. https://doi.org/10.1007/s10854-020-03877-8

Dimri MC, Kumar D, Aziz SB, Mishra K (2021) ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics. https://doi.org/10.1007/s11581-020-03899-6

Ma X, Qiao F, Qian M, Ye Y, Cao X, Wei Y, Li N, Sha M, Zi Z, Dai J (2021) Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries. Scripta Mater 190:153–157. https://doi.org/10.1016/j.scriptamat.2020.08.053

Xu L, Li J, Deng W, Li L, Zou G, Hou H, Huang L, Ji X (2021) Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Mater Chem Front 5(3):1315–1323. https://doi.org/10.1039/D0QM00541J

Ma C, Dai K, Hou H, Ji X, Chen L, Ivey DG, Wei W (2018) High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv Sci 5(5):1700996. https://doi.org/10.1002/advs.201700996

Subramania A, Sundaram NTK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153(1):177–182. https://doi.org/10.1016/j.jpowsour.2004.12.009

Subramania A, Sundaram NTK, Priya AR, Gangadharan R, Vasudevan T (2005) Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries. J Appl Polym Sci 98(5):1891–1896. https://doi.org/10.1002/app.22114

Subramania A, Kalyana Sundaram NT, Sukumar N (2005) Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process. J Power Sources 141(1):188–192. https://doi.org/10.1016/j.jpowsour.2004.09.001

Rao MC, Koutavarapu R, Kumar KV (2019) Structural and electrochemical properties of ZrO2 doped PVP-Na+ based nanocomposite polymer films. Mater Sci Semicond Process 89:41–50. https://doi.org/10.1016/j.mssp.2018.08.030

Gao H, Guo B, Song J, Park K, Goodenough JB (2015) A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries. Adv Energy Mater 5(9):1402235. https://doi.org/10.1002/aenm.201402235

Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D

Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279. https://doi.org/10.1007/s11581-016-1756-4

Yu X, Xue L, Goodenough JB, Manthiram A (2021) All-solid-state sodium batteries with a polyethylene glycol diacrylate–Na3Zr2Si2PO12 composite electrolyte. Adv Energy Sustain Res 2(1):2000061. https://doi.org/10.1002/aesr.202000061

Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

Mauger A, Julien CM (2020) State-of-the-art electrode materials for sodium-ion batteries. Materials 13(16). https://doi.org/10.3390/ma13163453

Bocharova V, Sokolov AP (2020) Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53(11):4141–4157. https://doi.org/10.1021/acs.macromol.9b02742

Torres FG, De-la-Torre GE, Gonzales KN, Troncoso OP (2020) Bacterial-polymer-based electrolytes: recent progress and applications. ACS Appl Energy Mater 3(12):11500–11515. https://doi.org/10.1021/acsaem.0c02195