Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29. https://doi.org/10.1038/nchem.2085
Buonomenna MG, Bae J, (2017) Sodium-ion batteries: a realistic alternative to lithium-ion batteries? Nanosci Nanotechnol Asia 7(2):139–154. https://doi.org/10.2174/2210681206666161019145001
Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4):18013. https://doi.org/10.1038/natrevmats.2018.13
Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage, WIREs Energy and Environment 4(3):253–278. https://doi.org/10.1002/wene.136
Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries, Advanced Functional Materials 23(8):947–958. https://doi.org/10.1002/adfm.201200691
Murugadoss V, Arunachalam S, Elayappan V, Angaiah S (2018) Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics 24(12):4071–4080. https://doi.org/10.1007/s11581-018-2540-4
Solarajan AK, Murugadoss V, Angaiah S (2016) Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl Mater Today 5:33–40. https://doi.org/10.1016/j.apmt.2016.09.002
Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294(1):8–15. https://doi.org/10.1016/j.memsci.2007.01.025
Kalyana Sundaram NT, Subramania A (2007) Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim Acta 52(15):4987–4993. https://doi.org/10.1016/j.electacta.2007.01.066
Matios E, Wang H, Wang C, Li W (2019) Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review. Ind Eng Chem Res 58(23):9758–9780. https://doi.org/10.1021/acs.iecr.9b02029
Zhou C, Bag S, Thangadurai V (2018) Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett 3(9):2181–2198. https://doi.org/10.1021/acsenergylett.8b00948
Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):16013. https://doi.org/10.1038/natrevmats.2016.13
Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115
Keller M, Varzi A, Passerini S (2018) Hybrid electrolytes for lithium metal batteries. J Power Sources 392:206–225. https://doi.org/10.1016/j.jpowsour.2018.04.099
Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed Engl 57(1):102–120. https://doi.org/10.1002/anie.201703772
Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47(6):2020–2064. https://doi.org/10.1039/C7CS00464H
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9):2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009
Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16(4):168–177. https://doi.org/10.1016/j.cossms.2012.04.002
Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614. https://doi.org/10.1039/C6CS00776G
Tong Z, Wang S-B, Liao Y-K, Hu S-F, Liu R-S (2020) Interface between solid-state electrolytes and Li-metal anodes: issues, materials, and processing routes. ACS Appl Mater Interfaces 12(42):47181–47196. https://doi.org/10.1021/acsami.0c13591
Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33:188–215. https://doi.org/10.1016/j.ensm.2020.08.014
Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R (2019) Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application 31(21):1808393. https://doi.org/10.1002/adma.201808393
Lu Y, Li L, Zhang Q, Niu Z, Chen J (2018) Electrolyte and interface engineering for solid-state sodium batteries. Joule 2(9):1747–1770. https://doi.org/10.1016/j.joule.2018.07.028
Tarascon J-M (2020) Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule 4(8):1616–1620. https://doi.org/10.1016/j.joule.2020.06.003
Li M, Wang C, Chen Z, Xu K, Lu J (2020) New concepts in electrolytes. Chem Rev 120(14):6783–6819. https://doi.org/10.1021/acs.chemrev.9b00531
Liang J, Luo J, Sun Q, Yang X, Li R, Sun X (2019) Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater 21:308–334. https://doi.org/10.1016/j.ensm.2019.06.021
Qiao L, Judez X, Rojo T, Armand M, Zhang H (2020) Review–polymer electrolytes for sodium batteries. J Electrochem Soc 167(7) 070534. https://doi.org/10.1149/1945-7111/ab7aa0
Ye F, Liao K, Ran R, Shao Z (2020) Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy Fuels 34(8):9189–9207. https://doi.org/10.1021/acs.energyfuels.0c02111
Zhang H, Chen F, Carrasco J (2021) Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Mater 36:77–90. https://doi.org/10.1016/j.ensm.2020.12.014
Maurya DK, Murugadoss V, Guo Z, Angaiah S (2021) Designing Na2Zn2TeO6-embedded 3D-nanofibrous poly(vinylidenefluoride)-co-hexafluoropropylene-based nanohybrid electrolyte via electrospinning for durable sodium-ion capacitors. ACS Appl Energy Mater 4(8):8475–8487. https://doi.org/10.1021/acsaem.1c01682
Voropaeva DY, Novikova SA, Yaroslavtsev AB (2020) Polymer electrolytes for metal-ion batteries. Russ Chem Rev 89(10):1132–1155. https://doi.org/10.1070/rcr4956
Yao P, Yu H, Ding Z, Liu Y, Lu J, Lavorgna M, Wu J, Liu X (2019) Review on polymer-based composite electrolytes for lithium batteries. 7(522). https://doi.org/10.3389/fchem.2019.00522
Wang Y, Song S, Xu C, Hu N, Molenda J, Lu L (2019) Development of solid-state electrolytes for sodium-ion battery–a short review. Nano Mater Sci 1(2):91–100. https://doi.org/10.1016/j.nanoms.2019.02.007
Han L, Lehmann ML, Zhu J, Liu T, Zhou Z, Tang X, Heish C-T, Sokolov AP, Cao P, Chen XC, Saito T (2020) Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries. Front Energy Res 8(202). https://doi.org/10.3389/fenrg.2020.00202
Tang S, Guo W, Fu Y (2021) Advances in composite polymer electrolytes for lithium batteries and beyond. Adv Energy Mater 11(2):2000802. https://doi.org/10.1002/aenm.202000802
Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu Y-S, Chen L (2018) Solid-state sodium batteries. Adv Energy Mater 8(17):1703012. https://doi.org/10.1002/aenm.201703012
Wehner LA, Mittal N, Liu T, Niederberger M (2021) Multifunctional batteries: flexible, transient, and transparent. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c01318
Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan C-W, Armand M, Chen L, Xu K, Shi S (2020) Mobile ions in composite solids. Chem Rev 120(9):4169–4221. https://doi.org/10.1021/acs.chemrev.9b00760
Zhang S, Yao Y, Yu Y (2021) Frontiers for room-temperature sodium–sulfur batteries. ACS Energy Lett 6(2):529–536. https://doi.org/10.1021/acsenergylett.0c02488
Boaretto N, Meabe L, Martinez-Ibañez M, Armand M, Zhang H (2020) Review–polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid. J Electrochem Soc 167(7):070524. https://doi.org/10.1149/1945-7111/ab7221
Choudhury S, Stalin S, Vu D, Warren A, Deng Y, Biswal P, Archer LA (2019) Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat Commun 10(1):4398. https://doi.org/10.1038/s41467-019-12423-y
Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu Y-S, Zhou Z, Li H, Huang X, Chen L (2016) A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A 4(41):15823–15828. https://doi.org/10.1039/C6TA07590H
Feng J, Wang L, Chen Y, Wang P, Zhang H, He X (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 8(1):2. https://doi.org/10.1186/s40580-020-00252-5
Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300. https://doi.org/10.1016/j.ensm.2020.10.006
Li S, Zhang S-Q, Shen L, Liu Q, Ma J-B, Lv W, He Y-B, Yang Q-H (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 7(5):1903088. https://doi.org/10.1002/advs.201903088
Qian S, Chen H, Wu Z, Li D, Liu X, Tang Y, Zhang S (2021) Designing ceramic/polymer composite as highly ionic conductive solid-state electrolytes. Batteries Supercaps 4(1):39–59. https://doi.org/10.1002/batt.202000149
Lim YJ, Han J, Kim HW, Choi Y, Lee E, Kim Y (2020) An epoxy-reinforced ceramic sheet as a durable solid electrolyte for solid state Na-ion batteries. J Mater Chem A 8(29):14528–14537. https://doi.org/10.1039/D0TA06024K
Kim J-K, Lim YJ, Kim H, Cho G-B, Kim Y (2015) A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 8(12):3589–3596. https://doi.org/10.1039/C5EE01941A
Cheng M, Qu T, Zi J, Yao Y, Liang F, Ma W, Yang B, Dai Y, Lei Y (2020) A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology 31(42):425401. https://doi.org/10.1088/1361-6528/aba059
Coustan L, Tarascon J-M, Laberty-Robert C (2019) Thin fiber-based separators for high-rate sodium ion batteries. ACS Appl Energy Mater 2(12):8369–8375. https://doi.org/10.1021/acsaem.9b01821
Chen M, Zhang Y, Xing G, Tang Y (2020) Building high power density of sodium-ion batteries: importance of multidimensional diffusion pathways in cathode materials. Front Chem 8(152). https://doi.org/10.3389/fchem.2020.00152
Eshetu GG, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, Passerini S (2016) Comprehensive insights into the reactivity of electrolytes based on sodium ions. Chem Sus Chem 9(5):462–471. https://doi.org/10.1002/cssc.201501605
Zhang H, Hasa I, Passerini S (2018) Sodium-ion batteries: beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Adv Energy Mater 8(17):1870082. https://doi.org/10.1002/aenm.201870082
Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114(23):11788–11827. https://doi.org/10.1021/cr500232y
Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ion 312:8–16. https://doi.org/10.1016/j.ssi.2017.10.004
Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52(3):686–694. https://doi.org/10.1021/acs.accounts.8b00566
Chen S, Feng F, Che H, Yin Y, Ma Z-F (2021) High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem Eng J 406:126736. https://doi.org/10.1016/j.cej.2020.126736
Zhang X, Wang X, Liu S, Tao Z, Chen J (2018) A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res 11(12):6244–6251. https://doi.org/10.1007/s12274-018-2144-3
Chen S, Che H, Feng F, Liao J, Wang H, Yin Y, Ma Z-F (2019) Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries. ACS Appl Mater Interfaces 11(46):43056–43065. https://doi.org/10.1021/acsami.9b11259
Yi Q, Zhang W, Li S, Li X, Sun C (2018) Durable sodium battery with a flexible Na3Zr2Si2PO12–PVDF–HFP composite electrolyte and sodium/carbon cloth anode. ACS Appl Mater Interfaces 10(41):35039–35046. https://doi.org/10.1021/acsami.8b09991
Devi C, Gellanki J, Pettersson H, Kumar S (2021) High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci Rep 11(1):20180. https://doi.org/10.1038/s41598-021-99663-5
Yu X, Xue L, Goodenough JB, Manthiram A (2021) Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv Func Mater 31(2):2002144. https://doi.org/10.1002/adfm.202002144
Zhang Z, Xu K, Rong X, Hu Y-S, Li H, Huang X, Chen L (2017) Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries. J Power Sources 372:270–275. https://doi.org/10.1016/j.jpowsour.2017.10.083
Yu X, Xue L, Goodenough JB, Manthiram A (2019) A high-performance all-solid-state sodium battery with a poly(ethylene oxide)–Na3Zr2Si2PO12 composite electrolyte. ACS Mater Lett 1(1):132–138. https://doi.org/10.1021/acsmaterialslett.9b00103
Wu J-F, Yu Z-Y, Wang Q, Guo X (2020) High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Mater 24:467–471. https://doi.org/10.1016/j.ensm.2019.07.012
Koduru HK, Marinov YG, Hadjichristov GB, Scaramuzza N (2019) Characterization of polymer/liquid crystal composite based electrolyte membranes for sodium ion battery applications. Solid State Ion 335:86–96. https://doi.org/10.1016/j.ssi.2019.02.021
Hiraoka K, Kato M, Kobayashi T, Seki S (2020) Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries. J Phys Chem C 124(40):21948–21956. https://doi.org/10.1021/acs.jpcc.0c05334
Verma H, Mishra K, Rai DK (2020) Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. J Solid State Electrochem 24(3):521–532. https://doi.org/10.1007/s10008-019-04490-4
Wang Y, Wang Z, Sun J, Zheng F, Kotobuki M, Wu T, Zeng K, Lu L (2020) Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous poly(ethylene oxide) for all-solid-state Na battery. J Power Sources 454:227949. https://doi.org/10.1016/j.jpowsour.2020.227949
Xie D, Zhang M, Wu Y, Xiang L, Tang Y (2020) A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Func Mater 30(5):1906770. https://doi.org/10.1002/adfm.201906770
Serra Moreno J, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702. https://doi.org/10.1016/j.jpowsour.2013.09.137
Dinachandra Singh M, Dalvi A (2021) Ionic transport in NASICON-polymer hybrids: an assessment using X-ray photoelectron spectroscopy. Appl Surf Sci 536:147792. https://doi.org/10.1016/j.apsusc.2020.147792
Chandra A, Chandra A, Thakur K (2016) Synthesis and ion conduction mechanism on hot-pressed sodium ion conducting nano composite polymer electrolytes. Arab J Chem 9(3):400–407. https://doi.org/10.1016/j.arabjc.2013.07.014
Chandra A, Chandra A, Thakurb K (2012) Na+ ion conducting hot-pressed nano composite polymer electrolytes. Port Electrochim Acta 30:81–88. https://doi.org/10.4152/pea.201202081
Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177. https://doi.org/10.1002/app.45177
Arunachalam S, Kirubasankar B, Pan D, Liu H, Yan C, Guo Z, Angaiah S (2020) Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. https://doi.org/10.1016/j.gee.2020.07.021
Sundaram NTK, Subramania A (2007) Microstructure of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process. J Membr Sci 289(1):1–6. https://doi.org/10.1016/j.memsci.2006.12.002
Maurya DK, Murugadoss V, Angaiah S (2019) All-solid-state electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/Li7.1La3Ba0.05Zr1.95O12 nanohybrid membrane electrolyte for high-energy Li-ion capacitors. J Phys Chem C 123(50):30145–30154. https://doi.org/10.1021/acs.jpcc.9b09264
Maurya DK, Balan B, Murugadoss V, Yan C, Angaiah S (2020) A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors. Mater Today Commun 25:101497. https://doi.org/10.1016/j.mtcomm.2020.101497
Solarajan AK, Murugadoss V, Angaiah S (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7(1):45390. https://doi.org/10.1038/srep45390
Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f
Villaluenga I, Bogle X, Greenbaum S, Gil de Muro I, Rojo T, Armand M (2013) Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes. J Mater Chem A 1(29):8348–8352. https://doi.org/10.1039/C3TA11290J
Bag S, Zhou C, Reid S, Butler S, Thangadurai V (2020) Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J Power Sources 454:227954. https://doi.org/10.1016/j.jpowsour.2020.227954
Kumar D, Gohel K, Kanchan DK, Mishra K (2020) Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci Mater Electron 31(16):13249–13260. https://doi.org/10.1007/s10854-020-03877-8
Dimri MC, Kumar D, Aziz SB, Mishra K (2021) ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics. https://doi.org/10.1007/s11581-020-03899-6
Ma X, Qiao F, Qian M, Ye Y, Cao X, Wei Y, Li N, Sha M, Zi Z, Dai J (2021) Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries. Scripta Mater 190:153–157. https://doi.org/10.1016/j.scriptamat.2020.08.053
Xu L, Li J, Deng W, Li L, Zou G, Hou H, Huang L, Ji X (2021) Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Mater Chem Front 5(3):1315–1323. https://doi.org/10.1039/D0QM00541J
Ma C, Dai K, Hou H, Ji X, Chen L, Ivey DG, Wei W (2018) High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv Sci 5(5):1700996. https://doi.org/10.1002/advs.201700996
Subramania A, Sundaram NTK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153(1):177–182. https://doi.org/10.1016/j.jpowsour.2004.12.009
Subramania A, Sundaram NTK, Priya AR, Gangadharan R, Vasudevan T (2005) Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li-ion batteries. J Appl Polym Sci 98(5):1891–1896. https://doi.org/10.1002/app.22114
Subramania A, Kalyana Sundaram NT, Sukumar N (2005) Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process. J Power Sources 141(1):188–192. https://doi.org/10.1016/j.jpowsour.2004.09.001
Rao MC, Koutavarapu R, Kumar KV (2019) Structural and electrochemical properties of ZrO2 doped PVP-Na+ based nanocomposite polymer films. Mater Sci Semicond Process 89:41–50. https://doi.org/10.1016/j.mssp.2018.08.030
Gao H, Guo B, Song J, Park K, Goodenough JB (2015) A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries. Adv Energy Mater 5(9):1402235. https://doi.org/10.1002/aenm.201402235
Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4(26):10038–10069. https://doi.org/10.1039/C6TA02621D
Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279. https://doi.org/10.1007/s11581-016-1756-4
Yu X, Xue L, Goodenough JB, Manthiram A (2021) All-solid-state sodium batteries with a polyethylene glycol diacrylate–Na3Zr2Si2PO12 composite electrolyte. Adv Energy Sustain Res 2(1):2000061. https://doi.org/10.1002/aesr.202000061
Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z
Mauger A, Julien CM (2020) State-of-the-art electrode materials for sodium-ion batteries. Materials 13(16). https://doi.org/10.3390/ma13163453
Bocharova V, Sokolov AP (2020) Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53(11):4141–4157. https://doi.org/10.1021/acs.macromol.9b02742