Composite based on PLA with improved shape stability under high-temperature conditions
Tài liệu tham khảo
Auras, 2004, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043
Aliotta, 2019, Rigid filler toughening in PLA-calcium carbonate composites: effect of particle surface treatment and matrix plasticization, Eur. Polym. J., 113, 78, 10.1016/j.eurpolymj.2018.12.042
Li, 2018, Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials, PLoS One, 13, 1
Marano, 2022, Tailoring the barrier properties of PLA: a state-of-the-art review for food packaging applications, Polymers, 14, 1626, 10.3390/polym14081626
Murariu, 2016, PLA composites: from production to properties, Adv. Drug Deliv. Rev., 107, 17, 10.1016/j.addr.2016.04.003
Alamri, 2021, Food packaging's materials: a food safety perspective, Saudi J. Biol. Sci., 28, 4490, 10.1016/j.sjbs.2021.04.047
Avolio, 2018, PLA-based plasticized nanocomposites: effect of polymer/plasticizer/filler interactions on the time evolution of properties, Compos. B Eng., 152, 267, 10.1016/j.compositesb.2018.07.011
Sanchez-Garcia, 2010, On the use of plant celulose nanowhiskers to enhance the barrier properties of polylactic acid, Cellulose, 7, 987, 10.1007/s10570-010-9430-x
Domenek, 2016, 171
Coltelli, 2008, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Polym. Sci., 110, 1250, 10.1002/app.28512
Dobircau, 2015, Molecular mobility and physical ageing of plasticized poly(lactide), Polym. Eng. Sci., 55, 858, 10.1002/pen.23952
Patanair, 2021, Promoting interfacial interactions with the addition of lignin in poly(lactic acid) hybrid nanocomposites, Polymers, 13, 272, 10.3390/polym13020272
Kawai, 2007, Crystallization and melting behavior of poly(l-lactic acid), Macromolecules, 40, 9463, 10.1021/ma070082c
Saeidlou, 2012, Poly(lactic acid) crystallization, Prog. Polym. Sci., 37, 1657, 10.1016/j.progpolymsci.2012.07.005
Andrew, 2022, Sustainable biobased composites for advanced applications: recent trends and future opportunities – a critical review, Compos. Part C Open Access., 7, 10.1016/j.jcomc.2021.100220
Helanto, 2021, Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials, J. Polym. Eng., 41, 746, 10.1515/polyeng-2021-0076
Jiang, 2007, Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms, Polymer, 48, 7632, 10.1016/j.polymer.2007.11.001
Ublekov, 2012, Influence of clay content on the melting behavior and crystal structure of nonisothermal crystallized poly(L-lactic acid)/nanocomposites, J. Appl. Polym. Sci., 124, 1643, 10.1002/app.35165
Andricic, 2008, Thermal properties of poly(L-Lactide)/calcium carbonate nanocomposites, Macromol. Symp., 263, 96, 10.1002/masy.200850312
Aframehr, 2017, Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid, Fibers Polym., 18, 2041, 10.1007/s12221-017-6853-0
Dhar, 2015, Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites, RSC Adv., 5, 60426, 10.1039/C5RA06840A
Ruellan, 2014, 124
Kang, 2018, An environmentally sustainable plasticizer toughened polylactide, RSC Adv., 8, 11643, 10.1039/C7RA13448G
Holcapkova, 2018, Thermal stability of bacteriocin nisin in polylactide-based films, Polym. Degrad. Stabil., 158, 31, 10.1016/j.polymdegradstab.2018.10.019
Xuetao, 2015, Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid), Molecules, 20, 1579, 10.3390/molecules20011579
Sedlarik, 2010, Optimization of the reaction conditions and characterization of L-lactic acid direct polycondensation products catalyzed by a non-metal-based compound, J. Appl. Polym. Sci., 116, 1597, 10.1002/app.31445
Stloukal, 2018, Effect of plasma treatment on the release kinetics of a chemotherapy drug from biodegradable polyester films and polyester urethane films, Int. J. Polym. Mater., 67, 161, 10.1080/00914037.2017.1309543
Srihanam, 2023, Phase morphology, mechanical, and thermal Properties of calcium carbonate-reinforced poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) bioplastics, Polymers, 301, 1
Asadi, 2021, Investigation on the role of nanoclay and nano calcium carbonate on morphology, rheology, crystallinity and mechanical properties of binary and ternary nanocomposites based on PLA, Int. J. Polym. Anal., 26, 1, 10.1080/1023666X.2020.1836459
Kim, 2008, Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites, J. Appl. Polym. Sci., 109, 3087, 10.1002/app.28229
Li, 2018, Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials, PLoS One, 13, 1
Chaos, 2020, Plasticization of poly(lactide) with poly(ethylene glycol): low weight plasticizer vs triblock copolymers. Effect on free volume and barrier properties, J. Appl. Polym. Sci., 137, 10.1002/app.48868
Muller, 2016, Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding, Polym. Int., 65, 970, 10.1002/pi.5142
Nedaipour, 2020, Polylactic acid-polyethylene glycol-hydroxyapatite composite” an efficient composition for interference screws, Nanocomposites, 6, 99, 10.1080/20550324.2020.1794688
Luna, 2021, Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters, Moment, 62, 1, 10.15446/mo.n62.89099
Cvek, 2022, Biodegradable films of PLA/PPC and curcumin as packaging materials and smart indicators of food spoilage, ACS Appl. Mater. Interfaces, 14, 14654, 10.1021/acsami.2c02181
2019, ISO 6721-4 Plastics – determination of dynamic mechanical properties — Part 4: tensile vibration — non-resonance method, Phys. Chem. Properties, 9
Sodergard, 2002, Properties of lactic acid based polymers and their correlation with composition, Prog. Mater. Sci., 27, 1123
2019, 26
2007, ISO 15105-1 Plastics – film and sheeting – determination of gas-transmission rate – Part 1: differential-pressure methods, ISO/TC 61/SC 11 Products, 12
1959, BS 3177 Method for determining the permeability to water vapor of flexible sheet material used for packaging, BSI PAI/, 11, 18
Gamez-Perez, 2011, Influence of crystallinity on the fracture toughness of poly (lactic acid)/montmorillonite nanocomposites prepared by twin‐screw extrusion, J. App.Polym. Sci., 120, 896, 10.1002/app.33191
Behzadnasab, 2020, Effects of processing conditions on mechanical properties of PLA printed parts, Rapid Prototyp. J., 26, 381, 10.1108/RPJ-02-2019-0048
Ali, 2022, The impact of the thermal annealing conditions on the structural properties of polylactic acid fibers, Microsc. Res. Tech., 85, 875, 10.1002/jemt.23956
Auras, 2004, Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films, J. Appl. Polym. Sci., 92, 1790, 10.1002/app.20148
Cowie, 1999, Glass transition and structural relaxation in polystyrene/poly(2,6- dimethyl-1,4-phenylene oxide) miscible blends, Macromolecules, 32, 4430, 10.1021/ma971531j
Sarasua, 2005, Crystallinity and mechanical properties of optically pure polylactides and their blends, Polym. Eng. Sci., 45, 745, 10.1002/pen.20331
Pillin, 2008, Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid), Polym. Degrad. Stabil., 93, 321, 10.1016/j.polymdegradstab.2007.12.005
Trinh, 2021, Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties, Polymer, 223, 10.1016/j.polymer.2021.123679
Richard, 2022, Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers, Polymer, 47, 5392
Picciochi, 2007, Glass transition of semicrystalline PLLA with different morphologies as studied by dynamic mechanical analysis, Colloid Polym. Sci., 285, 575, 10.1007/s00396-006-1590-8
Cristea, 2020, Dynamic mechanical analysis investigations of PLA-based renewable materials: how are they useful?, Materials, 13, 5302, 10.3390/ma13225302
Kopinke, 1996, Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid), Polym. Degrad. Stabil., 53, 329, 10.1016/0141-3910(96)00102-4
Carrasco, 2010, Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties, Polym. Degrad. Stabil., 95, 116, 10.1016/j.polymdegradstab.2009.11.045
Giita Silverajah, 2012, A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend, Int. J. Mol. Sci., 13, 5878, 10.3390/ijms13055878
Teixeira, 2021, Towards controlled degradation of poly(lactic) acid in technical applications, J. Carbon. Res., 7, 42, 10.3390/c7020042
Fan, 2004, Thermal stability of poly (L-lactide): influence of end protection by acetyl group, Polym. Degrad. Stabil., 84, 143, 10.1016/j.polymdegradstab.2003.10.004
Petchwattana, 2014, Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly (lactic acid), Polym. Bull., 71, 1947, 10.1007/s00289-014-1165-7
Liu, 2014, Effects of inorganic fillers on the thermal and mechanical properties of poly (lactic acid), Int. J. Polym. Sci., 10.1155/2014/827028
Yang, 2015, Mechanical properties and thermal stability of poly (lactic acid) toughened by precipitated barium sulfate, Russ. J. Phys. Chem. A, 89, 2092, 10.1134/S0036024415110242
Klonos, 2016, Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L-lactic acid) and nano-inclusions of 1-3D geometry studied by thermal and dielectric techniques, Eur. Polym. J., 82, 16, 10.1016/j.eurpolymj.2016.07.002
Terzopoulou, 2019, Interfacial interactions, crystallization and molecular mobility in nanocomposites of poly(lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles, Polymer, 166, 1, 10.1016/j.polymer.2019.01.041
Zhou, 2016, Temperature dependence of poly (lactic acid) mechanical properties, RSC Adv., 114, 113762, 10.1039/C6RA23610C
Yu, 2008, Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid, Polym. Eng. Sci., 48, 634, 10.1002/pen.20970
Androsch, 2014, Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly(L-lactic acid), Polymer, 55, 4932, 10.1016/j.polymer.2014.07.046
Wurm, 2010, Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase, Macromolecules, 43, 1480, 10.1021/ma902175r
Guinault, 2012, Impact of crystallinity of poly(lactide) on helium and oxygen barrier properties, Eur. Polym. J., 48, 779, 10.1016/j.eurpolymj.2012.01.014
Leng, 2019, Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(L-lactide)-based nanocomposites with different layered double hydroxides as nanofiller, Polymer, 184, 10.1016/j.polymer.2019.121929
Kumar, 2014, Studies of poly(lactic acid) based calcium carbonate nanocomposites, Compos. B Eng., 56, 184, 10.1016/j.compositesb.2013.08.021
Safl, 2021, Annealing of polymer material PLA for improved properties, ECS Trans., 105, 419, 10.1149/10501.0419ecst
Tabi, 2010, Crystalline structure of annealed polylactic acid and its relation to processing, Express Polym. Lett., 4, 659, 10.3144/expresspolymlett.2010.80
Marsilla, 2017, Crystallization of itaconic anhydride grafted poly(lactic acid) during annealing, J. Appl. Polym. Sci., 134, 10.1002/app.44614
Nie, 2022, Effect of crystallization on shape memory effect of poly(lactic acid), Polymers, 14, 1569, 10.3390/polym14081569
Sonchaeng, 2018, Poly(lactic acid) mass transfer properties, Prog. Polym. Sci., 86, 85, 10.1016/j.progpolymsci.2018.06.008
Janczak, 2020, Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants, Int. Biodeterior. Biodegrad., 155, 10.1016/j.ibiod.2020.105087
Rhim, 2009, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT--Food Sci. Technol., 42, 10.1016/j.lwt.2008.02.015
Delpouve, 2012, Water barrier properties in biaxially drawn poly(lactic acid) films, J. Phys. Chem. B, 116, 4615, 10.1021/jp211670g
Al-Mulla, 2010, Properties of epoxidized palm oil plasticized polytlactic acid, J. Mater. Sci., 45, 1942, 10.1007/s10853-009-4185-1
Drieskens, 2009, Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties, J. Polym. Sci. B., 47, 2247, 10.1002/polb.21822
Trifol, 2020, Effect of crystallinity on water vapor sorption, diffusion, and permeation of PLA-based nanocomposites, ACS Omega, 18, 15362, 10.1021/acsomega.0c01468
Wang, 2021, Comparative study on water vapour resistance of poly(lactic acid) films prepared by blending, filling and surface deposit, Membranes, 11, 915, 10.3390/membranes11120915
Rocca-Smith, 2017, Effect of the state of water and relative humidity on ageing of PLA films, Food Chem., 236, 109, 10.1016/j.foodchem.2017.02.113