Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium
Tài liệu tham khảo
APHA, 1999
Bian, 2011, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27, 6059, 10.1021/la200570n
Calder, 2012, Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6, Sci. Total Environ., 429, 215, 10.1016/j.scitotenv.2012.04.049
Changela, 2003, Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR, Science, 301, 1383, 10.1126/science.1085950
Child, 2007, Polycyclic aromatic hydrocarbon-degrading mycobacterium isolates: their association with plant roots, Appl. Microbiol. Biotechnol., 75, 655, 10.1007/s00253-007-0840-0
Dimkpa, 2011, Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis, J. Hazard. Mater., 188, 428, 10.1016/j.jhazmat.2011.01.118
Dimkpa, 2011, Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions, Environ. Pollut., 159, 1749, 10.1016/j.envpol.2011.04.020
Dimkpa, 2012, CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat, J. Nanoparticle Res., 14, 1125, 10.1007/s11051-012-1125-9
Dimkpa, 2013, Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen, Fusarium graminearum, BioMetals, 26, 913, 10.1007/s10534-013-9667-6
Dimkpa, 2013, Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix, Environ. Sci. Technol., 47, 1082, 10.1021/es302973y
Dubois, 1956, Colorimetric method for the determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017
Gajjar, 2009, Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440, J. Biol. Eng., 3, 9, 10.1186/1754-1611-3-9
Giannousi, 2013, Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans, R. Soc. Chem. Adv., 3, 21743
Haichar, 2008, Plant host habitat and root exudates shape soil bacterial community structure, ISME J., 2, 1221, 10.1038/ismej.2008.80
He, 2011, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microb. Res., 166, 207, 10.1016/j.micres.2010.03.003
Hynninen, 2010, Improving the sensitivity of bacterial bioreporters for heavy metals, Bioeng. Bugs, 1, 132, 10.4161/bbug.1.2.10902
Jiang, 2009, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, J. Nanoparticle Res., 11, 77, 10.1007/s11051-008-9446-4
Jin, 2006, Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pretense L.), Plant Cell. Environ., 29, 888, 10.1111/j.1365-3040.2005.01468.x
Jones, 2008, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett., 279, 71, 10.1111/j.1574-6968.2007.01012.x
Lemire, 2013, Antimicrobial activity of metals: mechanisms molecular targets and applications, Nat. Rev. Microbiol., 11, 371, 10.1038/nrmicro3028
Liu, 2009, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7, J. Appl. Microbiol., 107, 1193, 10.1111/j.1365-2672.2009.04303.x
Liu, 2011, Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase, J. Colloid Interface Sci., 363, 84, 10.1016/j.jcis.2011.06.085
McLean, 2013, Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida, Chemosphere, 91, 374, 10.1016/j.chemosphere.2012.11.071
Miller, 2009, Copper and cadmium: responses in Pseudomonas putida KT2440, Lett. Appl. Microbiol., 49, 775, 10.1111/j.1472-765X.2009.02741.x
Mortimer, 2008, High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles, Toxicol. Vitro, 22, 1412, 10.1016/j.tiv.2008.02.011
Outten, 2001, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science, 292, 2488, 10.1126/science.1060331
Parker, 1995, GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers, 253
Ren, 2009, Characterization of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004
Svedberg, 1923, Determination of size and distribution of size of particle by centrifugal methods, J. Am. Chem. Soc., 45, 2910, 10.1021/ja01665a016
Yang, 2000, Rhizosphere microbial community structure in relation to root location and plant iron nutritional status, Appl. Env. Microbiol., 66, 345, 10.1128/AEM.66.1.345-351.2000
Zhao, 2012, Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies, Chem. Eng. J., 184, 1, 10.1016/j.cej.2012.01.041