Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium

Environmental Pollution - Tập 187 - Trang 65-72 - 2014
Nicole Martineau1, Joan E. McLean2, Christian O. Dimkpa1, David W. Britt3, Anne J. Anderson1
1Department of Biology, Utah State University, Logan, UT 84322-5305, USA
2Utah Water Research Laboratory, Utah State University, Logan, UT 84322-5305, USA
3Department of Biological Engineering, Utah State University, Logan, UT 84322-5305, USA

Tài liệu tham khảo

APHA, 1999 Bian, 2011, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27, 6059, 10.1021/la200570n Calder, 2012, Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6, Sci. Total Environ., 429, 215, 10.1016/j.scitotenv.2012.04.049 Changela, 2003, Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR, Science, 301, 1383, 10.1126/science.1085950 Child, 2007, Polycyclic aromatic hydrocarbon-degrading mycobacterium isolates: their association with plant roots, Appl. Microbiol. Biotechnol., 75, 655, 10.1007/s00253-007-0840-0 Dimkpa, 2011, Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis, J. Hazard. Mater., 188, 428, 10.1016/j.jhazmat.2011.01.118 Dimkpa, 2011, Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions, Environ. Pollut., 159, 1749, 10.1016/j.envpol.2011.04.020 Dimkpa, 2012, CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat, J. Nanoparticle Res., 14, 1125, 10.1007/s11051-012-1125-9 Dimkpa, 2013, Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen, Fusarium graminearum, BioMetals, 26, 913, 10.1007/s10534-013-9667-6 Dimkpa, 2013, Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix, Environ. Sci. Technol., 47, 1082, 10.1021/es302973y Dubois, 1956, Colorimetric method for the determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017 Gajjar, 2009, Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440, J. Biol. Eng., 3, 9, 10.1186/1754-1611-3-9 Giannousi, 2013, Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans, R. Soc. Chem. Adv., 3, 21743 Haichar, 2008, Plant host habitat and root exudates shape soil bacterial community structure, ISME J., 2, 1221, 10.1038/ismej.2008.80 He, 2011, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microb. Res., 166, 207, 10.1016/j.micres.2010.03.003 Hynninen, 2010, Improving the sensitivity of bacterial bioreporters for heavy metals, Bioeng. Bugs, 1, 132, 10.4161/bbug.1.2.10902 Jiang, 2009, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, J. Nanoparticle Res., 11, 77, 10.1007/s11051-008-9446-4 Jin, 2006, Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pretense L.), Plant Cell. Environ., 29, 888, 10.1111/j.1365-3040.2005.01468.x Jones, 2008, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett., 279, 71, 10.1111/j.1574-6968.2007.01012.x Lemire, 2013, Antimicrobial activity of metals: mechanisms molecular targets and applications, Nat. Rev. Microbiol., 11, 371, 10.1038/nrmicro3028 Liu, 2009, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7, J. Appl. Microbiol., 107, 1193, 10.1111/j.1365-2672.2009.04303.x Liu, 2011, Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase, J. Colloid Interface Sci., 363, 84, 10.1016/j.jcis.2011.06.085 McLean, 2013, Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida, Chemosphere, 91, 374, 10.1016/j.chemosphere.2012.11.071 Miller, 2009, Copper and cadmium: responses in Pseudomonas putida KT2440, Lett. Appl. Microbiol., 49, 775, 10.1111/j.1472-765X.2009.02741.x Mortimer, 2008, High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles, Toxicol. Vitro, 22, 1412, 10.1016/j.tiv.2008.02.011 Outten, 2001, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science, 292, 2488, 10.1126/science.1060331 Parker, 1995, GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers, 253 Ren, 2009, Characterization of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004 Svedberg, 1923, Determination of size and distribution of size of particle by centrifugal methods, J. Am. Chem. Soc., 45, 2910, 10.1021/ja01665a016 Yang, 2000, Rhizosphere microbial community structure in relation to root location and plant iron nutritional status, Appl. Env. Microbiol., 66, 345, 10.1128/AEM.66.1.345-351.2000 Zhao, 2012, Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies, Chem. Eng. J., 184, 1, 10.1016/j.cej.2012.01.041