Component analysis of the impedance of a CoFeNbSiB magnetically soft conductor with a nonuniform magnetic structure

Pleiades Publishing Ltd - Tập 60 - Trang 767-771 - 2015
A. V. Semirov1, A. A. Moiseev1, V. O. Kudryavtsev1, D. A. Bukreev1, N. P. Kovaleva1, N. V. Vasyukhno1
1East Siberian State Academy of Education, Irkutsk, Russia

Tóm tắt

The influence of an external magnetic field and elastic tensile stresses on the real and imaginary components of the impedance of a magnetically soft amorphous conductor with a low positive magnetostriction constant is studied. The difference is found between the frequencies at which the circular permeabilities of conductor’s parts with different types of magnetic anisotropy do not have a dominant influence on the real and imaginary components of the impedance any longer. It is shown that the sensitivity of the imaginary part of the impedance to a change in the magnetic structure of the conductor exceeds the sensitivity of the real component in a wide frequency interval. The variation of the impedance components under the influence of external actions is analyzed. This analysis may greatly expand the potential of magnetoimpedance spectroscopy, and the detection of the impedance’s imaginary component in magnetically soft and stress-impedance transducers will raise their sensitivity.

Tài liệu tham khảo

K. Mohri, F. B. Humphrey, J. Yamasaki, and F. Kinoshita, IEEE Trans. Magn. 21, 2017 (1985). V. Madurga and A. Hernando, J. Phys.: Condens. Matter. 2, 2127 (1990). J. Liu, R. Malmhall, S. J. Savage, and L. Arnberg, J. Appl. Phys. 67, 4238 (1990). A. I. Slutsker, V. I. Betekhtin, A. G. Kadomtsev, O. V. Tolochko, and O. V. Amosova, Phys. Solid State 50, 290 (2008). G. V. Kurlyandskaya, in Encyclopedia of Sensors (American Scientific, New York, 2006), Vol. 4, p. 205. M. Vazquez and D. X. Chen, IEEE Trans. Magn. 31, 1229 (1995). L. V. Panina, K. Mohri, T. Ushiyama, M. Noda, and K. Bushida, IEEE Trans. Magn. 31, 1249 (1995). M. Vazquez and A. Hernando, J. Phys. D: Appl. Phys. 29, 939 (1996). M. Knobel, M. Vazquez, M. L. Sanchez, and A. Hernando, J. Magn. Magn. Mater. 169, 89 (1997). N. Usov, A. Antonov, A. Dykhne, and A. Lagarkov, J. Phys.: Condens. Matter. 10, 2453 (1998). A. S. Antonov, V. T. Borisov, O. V. Borisov, V. A. Pozdnyakov, A. F. Prokoshin, and N. A. Usov, J. Phys. D: Appl. Phys. 32, 1788 (1999). N. A. Usov, J. Magn. Magn. Mater. 249, 3 (2002). A. V. Semirov, A. A. Gavrilyuk, V. O. Kudryavtsev, A. A. Moiseev, D. A. Bukreev, A. L. Semenov, and Z. F. Ushchapovskaya, Defektoskopiya, No. 10, 3 (2007). G. V. Kurlyandskaya, D. de Kos, and S. O. Volchkov, Defektoskopiya, No. 6, 13 (2009). A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and A. N. Sapozhnikov, Defektoskopiya, No. 12, 26 (2010). A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko, Nauchn. Priborostr. 20, 42 (2010). A. V. Semirov, A. A. Gavrilyuk, V. O. Kudryavtsev, and A. A. Moiseev, Tech. Phys. Lett. 32, 656 (2006). A. V. Semirov, D. A. Bukreev, V. O. Kudryavtsev, A. A. Moiseev, A. A. Gavrilyuk, A. L. Semenov, and G. V. Zakharov, Tech. Phys. 54, 1586 (2009). L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, New York, 1984). R. S. Beach and A. E. Berkowitz, J. Appl. Phys. 76, 6209 (1994). F. L. A. Machado and S. M. Rezende, J. Appl. Phys. 79, 6558 (1996). S. Tikadzumi, Physics of Magnetism (Wiley, New York, 1964).