Component SPD matrices: A low-dimensional discriminative data descriptor for image set classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
Huang, Z.; Wang, R.; Shan, S.; Chen, X. Projection metric learning on Grassmann manifold with application to video based face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 140–149, 2015.
Harandi, M.; Salzmann, M.; Hartley, R. Dimensionality reduction on SPD manifolds: The emergence of geometry-aware methods. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 1, 48–62, 2017.
Chang, F.-J.; Nevatia, R. Image set classification via template triplets and context-aware similarity embedding. In: Computer Vision–ACCV 2016. Lecture Notes in Computer Science, Vol. 10115. Lai, S. H.; Lepetit, V.; Nishino, K.; Sato, Y. Eds. Springer Cham, 231–247, 2016.
Huang, Z.; Wang, R.; Shan, S.; Li, X.; Chen, X. Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: Proceedings of the 32nd International Conference on Machine Learning, Vol. 37, 720–729, 2015.
Faraki, M.; Harandi, M. T.; Porikli, F. Image set classification by symmetric positive semi-definite matrices. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 1–8, 2016.
Chen, Z.; Jiang, B.; Tang, J.; Luo, B. Image set representation and classification with attributed covariate-relation graph model and graph sparse representation classification. Neurocomputing Vol. 226, 262–268, 2017.
Wang, R.; Guo, H.; Davis, L. S.; Dai, Q. Covariance discriminative learning: A natural and efficient approach to image set classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2496–2503, 2012.
Ren, J.; Wu, X. Bidirectional covariance matrices: A compact and efficient data descriptor for image set classification. In: Intelligence Science and Big Data Engineering. Image and Video Data Engineering. Lecture Notes in Computer Science, Vol. 9242. He, X. et al. Eds. Springer Cham, 186–195, 2015.
Cherian, A.; Sra, S. Riemannian dictionary learning and sparse coding for positive definite matrices. IEEE Transactions on Neural Networks and Learning Systems Vol. 28, No. 12, 2859–2871, 2017.
Harandi, M. T.; Hartley, R.; Lovell, B.; Sanderson, C. Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Transactions on Neural Networks and Learning Systems Vol. 27, No. 6, 1294–1306, 2016.
Li, P.; Wang, Q.; Zuo, W.; Zhang, L. Log-Euclidean kernels for sparse representation and dictionary learning. In: Proceedings of the IEEE International Conference on Computer Vision, 1601–1608, 2013.
Wang, Q.; Li, P.; Zuo, W.; Zhang, L. RAID-G: Robust estimation of approximate infinite dimensional Gaussian with application to material recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4433–4441, 2016.
Faraki, M.; Harandi, M. T.; Porikli, F. Approximate infinite-dimensional region covariance descriptors for image classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1364–1368, 2015.
Arandjelovic, O.; Shakhnarovich, G.; Fisher, J.; Cipolla, R.; Darrell, T. Face recognition with image sets using manifold density divergence. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 581–588, 2005.
Tuzel, O.; Porikli, F.; Meer, P. Region covariance: A fast descriptor for detection and classification. In: Computer Vision–ECCV 2006. Lecture Notes in Computer Science, Vol. 3952. Leonardis, A.; Bischof, H.; Pinz, A. Eds. Springer Berlin Heidelberg, 589–600, 2006.
Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control Vol. 26, No. 1, 17–32, 1981.
Izenman, A. J. Linear discriminant analysis. In: Modern Multivariate Statistical Techniques. Springer Texts in Statistics. Springer New York, 237–280, 2013.
Zhang, D.; Zhou, Z.-H. (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing Vol. 69, Nos. 1–3, 224–231, 2005.
Pennec, X.; Fillard, P.; Ayache, N. A Riemannian framework for tensor computing. International Journal of Computer Vision Vol. 66, No. 1, 41–66, 2006.
Harandi, M.; Salzmann, M. Riemannian coding and dictionary learning: Kernels to the rescue. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3926–3935, 2015.