Complimentary Endothelial Cell/Smooth Muscle Cell Co-Culture Systems with Alternate Smooth Muscle Cell Phenotypes

Springer Science and Business Media LLC - Tập 35 - Trang 1382-1390 - 2007
Stacey L. Rose1, Julia E. Babensee1
1Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA

Tóm tắt

Development of in vitro models of native and injured vasculature is crucial for better understanding altered wound healing in disease, device implantation, or tissue engineering. Conditions were optimized using polyethyleneteraphalate transwell filters for human aortic endothelial cell (HAEC)/smooth muscle cell (HASMC) co-cultures with divergent HASMC phenotypes (‘more or less secretory’) while maintaining quiescent HAECs. Resulting HASMC phenotype was studied at 48 and 72 h following co-culture initiation, and compared to serum and growth factor starved monocultured ‘forced contractile’ HASMCs. Forced contractile HASMCs demonstrated organized α-smooth muscle actin filaments, minimal interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion, and low intracellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and tissue factor expression. Organization of α-smooth muscle actin was lost in ‘more secretory’ HASMCs in co-culture with HAECs, and IL-8 and MCP-1 secretion, as well as ICAM-1, VCAM-1, and tissue factor expression were significantly upregulated at both time points. Alternately, ‘less secretory’ HASMCs in co-culture with HAECs showed similar characteristics to forced contractile HASMCs at the 48 h time point, while by the 72 h time point they behaved similarly to ‘more secretory’ HASMCs. These co-culture systems could be useful in better understanding vascular healing, however there remain time constraint considerations for maintaining culture integrity/cell phenotype.

Tài liệu tham khảo

Campbell G. R., J. H. Campbell. Development of the vessel wall. In: S. M. Schwartz, F. P. Mechams (eds) The Vascular Smooth Muscle Cell. San Diego, CA: Academic Press, 1995, pp. 3–15 Castellot J. J. Jr., M. L. Addonizio, R. Rosenberg, M. J. Karnovsky. 1981 Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J. Cell Biol. 90:372–379 Chiu J. J., L. J. Chen, S. F. Chang, P. L. Lee, C. I. Lee, M. C. Tsai, D. Y. Lee, H. P. Hsieh, S. Usami, S. Chien 2005 Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: role of NF-κB. Arterioscler. Thromb. Vasc. Biol. 25:963–969 Chiu J. J., L. J. Chen, C. N. Chen, P. L. Lee, C. I. Lee 2004 A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37:531–539 Chiu J. J., L. J. Chen, P. L. Lee, L. W. Lo, S. Usami, S. Chien 2003 Shear stress inhibits adhesion molecules expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101:2667–2674 Cucina A., V. Borrelli, B. Randone, P. Coluccia, P. Sapienza, A. Cavallaro 2003 Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J. Surg. Res. 109:16–23 Davies P. F., G. A. Truskey, H. B. Warren, S. E. O’Conner, B. H. Eisenhaure. 1985 Metabolic cooperation between vascular endothelial cells and smooth muscle cells in co-culture: changes in low density lipoprotein metabolism. J. Cell Biol. 101:871–879 Dekker R. J., S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. Van Bavel, H. Pannekoek, A. J. G. Horrevoets. 2002 Prolonged fluid shear stress induces a distinct set of endothelial genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698 Fetalvero K. M., M. Shyu, A. P. Nomikos, Y. F. Chiu, R. J. Wagner, R. J. Powell, J. Hwa, K. A. Martin. 2006 The prostacyclin receptor induces human vascular smooth muscle cell differentiation via the protein kinase A pathway. Am. J. Physiol. Heart Circ. Physiol. 290:H1337–H1346 Fillinger M. F., S. E. O’Conner, R. J. Wagner, J. L. Cronenwett 1993 The effect of endothelial cell coculture on smooth muscle cell proliferation. J. Vasc. Surg. 17:1058–1068 Fillinger M. F., L. N. Sampson, J. L. Cronenwett, R. J. Powell, R. J. Wagner 1997 Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J. Surg. Res. 67:169–178 Heydarkhan-Hagvall S., G. Helenius, B. R. Johansson, J. Y. Li, E. Mattsson, B. Risberg. 2003 Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J. Cell Biochem. 89:1250–1259 Imberti B., S. Seliktar, R. M. Nerem, A. Remuzzi 2002 The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. Endothelium 9:11–23 Jordan N. J., M. L. Watson, R. J. Williams, A. G. Roach, T. Yoshimura, J. Westwick 1997 Chemokine production by vascular smooth muscle cells: modulation by IL-13. J. Pharmacol. 122:749–757 Kladakis S. M., R. M. Nerem 2004 Endothelial cell monolayer formation: effect of substrate and fluid shear stress. Endothelium 11:29–44 Korff T., S. Kimmina, G. Martiny-Baron, H. G. Augustin. 2001 Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 15:447–457 Lepore J. J., T. P. Capola, P. M. Mericko, E. E. Morrisey, M. S. Parmacek 2005 GATA-6 regulates genes promoting synthetic functions in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 25:309–314 Li S., S. Sims, Y. Jiao, L. H. Chow, J. G. Pickering 1999 Evidence from a novel human cell clone that adult vascular smooth muscle cells can convert reversibly between noncontractile and contractile phenotypes. Circ. Res. 85:338–348 Libby P., K. V. O’Brian 1983 Culture of quiescent arterial smooth muscle cells in a define serum-free medium. J. Cell Physiol. 115:217–223 Lin Z., A. Kumar, S. SenBanerjee, K. Staniszewski, K. Parmar, D. E. Vaughan, M. A. Gimbrone, V. Balasubramanian, G. García-Cardeña, M. K. Jain 2005 Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ. Res. 96:e48–e57 Lin P. H., D. Ren, M. Hirko, S. S. Kang, G. F. Pierce, H. Greisler 1998 Fibroblast growth factor-2-toxin induced cytotoxicity: differential sensitivity of co-cultured vascular smooth muscle cells and endothelial cells. Atherosclerosis 137:277–289 Nackman G. B., F. R. Bech, M. F. Fillinger, R. J. Wagner, J. L. Cronenwett 1996 Endothelial cells modulate smooth muscle cell morphology by inhibition of transforming growth factor-beta1 activation. Surgery 120:418–426 Nackman G. B., M. F. Fillinger, F. Shafritz, T. Wei, A. M. Graham 1998 Flow modulates endothelial regulation of smooth muscle cell proliferation: a new model. Surgery 124:353–361 Owens G. K. 1995 Regulation of differentiation of vascular smooth-muscle cells. Physiol. Rev. 75:487–517 Parmar K. M., H. B. Larman, G. Dai, Y. Zhang, E. T. Wang, S. N. Moorthy, J. R. Kratz, Z. Lin, M. K. Jain, M. A. Gimbrone, G. García-Cardeña 2006 Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116:49–58 Rainger G. E., P. Stone, C. M. Morland, G. B. Nash 2001 A novel system for investigating the ability of smooth muscle cells and fibroblasts to regulate adhesion of flowing leukocytes to endothelial cells. J. Immunol. Methods 255:73–82 Rose, S. L., and J. E. Babensee. Smooth muscle cell phenotype alters co-cultured endothelial cell response to biomaterial-pretreated leukocytes. J. Biomed. Mater. Res. (in press) Schecter A. D., B. Spirn, M. Rossikhina, P. L. A. Giesen, V. Bogdanov, J. T. Fallon, E. A. Fisher, L. M. Schnapp, Y. Nemerson, M. B. Taubman. 2000 Release of active tissue factor by human arterial smooth muscle cells. Circ. Res. 87:126–132 SenBanerjee S., Z. Lin, B. Atkins, D. M. Greif, R. M. Rao, A. Kumar, M. W. Feinberg, Z. Chen, D. I. Simon, F. W. Luscinskas, T. M. Michel, M. A. Gimbrone, G. García-Cardeña, M. K. Jain 2004 KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199:1305–1315 Soff G. A., R. W. Jackman, R. D. Rosenberg 1991 Expression of thrombomodulin by smooth muscle cells in culture: different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood 77:515–518 Stegemann J. P., Hong H., Nerem R. M. 2005 Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J. Appl. Physiol. 98:2321–2327 Thyberg J., U. Hedin, M. Sjolund, L. Palmberg, B. A. Bottger. 1990 Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Atherosclerosis 63:99–107 Van Buul-Wortelboer M. F., H. J. M. Brinkman, Z. K. P. Dingemans, P. G. De Groot, W. G. van Aken, J. A. van Mourick 1986 Reconstitution of the vascular wall in vitro: a novel model to study interactions between endothelial and smooth muscle cells. Exp. Cell Res. 162:151–158 Vouyouka A. G., S. S. Salib, S. Cala, J. D. Marsh, M. D. Basson 2003 Chronic high pressure potentiates the antiproliferative effect and abolishes contractile phenotypic changes caused by endothelial cells in cocultured smooth muscle cells. J. Surg. Res. 110:344–351 Waybill P. N., L. J. Hopkins 1999 Arterial and venous smooth muscle cell proliferation in response to co-culture with arterial and venous endothelial cells. J. Vasc. Interv. Radiol. 10:1051–1057 Wilcox J. N., K. M. Smith, S. M. Schwartz, D. Gordon 1997 Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. J. Clin. Invest. 100:2276–2285 Zhang J. C., Q. R. Ruan, L. Paucz, A. Fabry, B. R. Binder, J. Wojta. 1999 Stimulation of tissue factor expression in human microvascular and macrovascular endothelial cells by cultured vascular smooth muscle cells in vitro. J. Vasc. Res. 36:126–132 Ziegler T., R. W. Alexander, R. M. Nerem 1995 An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23:216–225