Compliant cellular materials with compliant porous structures: A mechanism based materials design
Tài liệu tham khảo
Berglind, 2010, Method to design honeycombs for a shear flexible structure, SAE Int. J. Passenger Cars – Mech. Syst., 3, 588, 10.4271/2010-01-0762
Cirone, 2012, Design of contract-aided compliant cellular mechanisms with curved walls, J. Intell. Mater. Syst. Struct., 23, 1773, 10.1177/1045389X12453962
Deshpande, 2001, Foam topology bending versus stretching dominated architectures, Acta Mater., 49, 1035, 10.1016/S1359-6454(00)00379-7
Evans, 1999, Microporous materials with negative Poisson’s ratios: II. Mechanisms and interpretation, J. Phys. D: Appl. Phys., 22, 1883, 10.1088/0022-3727/22/12/013
Gibson, 1997
Heo, 2013, Compliant cellular structures: application to a passive morphing airfoil, Compos. Struct., 106, 560, 10.1016/j.compstruct.2013.07.013
Howell, 2001
Hutchinson, 2006, The structural performance of the periodic truss, J. Mech. Phys. Solids, 54, 765, 10.1016/j.jmps.2005.10.008
Ju, 2011, Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain, Mater. Des., 32, 512, 10.1016/j.matdes.2010.08.029
Ju, J., Summers, J.D., 2011. Shear compliant hexagonal cellular solids with a shape memory alloy. In: Proceedings of the ASME International Design Engineering Technical Conferences, DETC2011-48790, Washington, DC.
Ju, 2012, Design of honeycombs for modulus and yield strain in shear, Trans. ASME: J. Eng. Mater. Technol., 134, 011002
Ju, 2012, Flexible cellular solid spokes for a non-pneumatic tire, Compos. Struct., 94, 2285, 10.1016/j.compstruct.2011.12.022
Kim, 2013, Porous materials with high negative Poisson’s ratios – a mechanism based material design, Smart Mater. Struct., 22, 084007, 10.1088/0964-1726/22/8/084007
Larsen, 1997, Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio, J. Microelectromech. Syst., 6, 99, 10.1109/84.585787
Lobontiu, 2003, Analytical model of displacement application and stiffness optimization for a class of flexure-based compliant mechanisms, Comput. Struct., 81, 2797, 10.1016/j.compstruc.2003.07.003
Lobontiu, N., Paine, Jeffrey S.N., Garcia, E., Goldfarb, M., 2002. Mech. Mach. Theory 37, 477–498.
Mehta, 2009, Stress relief in contact aided compliant cellular mechanisms, Trans. ASME: J. Mech. Des., 131, 091009, 10.1115/1.3165778
Muraoka, 2010, Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism, Sens. Actuator A, 157, 84, 10.1016/j.sna.2009.10.024
Paros, 1965, How to design flexure hinge, Mach. Des., 37, 151
Saxena, 2001, Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications, ASME J. Mech. Des., 123, 33, 10.1115/1.1333096
Saxena, 2000, On an optimal property of compliant topologies, Struct. Multi. Optim., 19, 36, 10.1007/s001580050084
Shankar, P., Ju, J., Summers, J.D., Zeigert, J., 2010. Design of sinusoidal auxetic structures for high shear flexure. In: Proceedings of the ASME International Design Engineering Technical Conferences, DETC2010-28545, Montreal, Quebec, Canada.
Tanaka, 2009, In-plane mechanical behaviors of 2D repetitive frameworks with four-coordinate flexible joints and elbowed beam members, J. Mech. Phys. Solids, 57, 1485, 10.1016/j.jmps.2009.06.001
Wang, 2004, In-plane stiffness and yield strength of periodic metal honeycombs, Trans. ASME: J. Eng. Mater. Technol., 126, 137
Wicks, 2004, Single member actuation in large repetitive truss structures, Int. J. Solids Struct., 41, 965, 10.1016/j.ijsolstr.2003.09.029
