Compliant assembly variation analysis of composite structures using the Monte Carlo method with consideration of stress-stiffening effects

Archive of Applied Mechanics - Tập 93 - Trang 4065-4080 - 2023
Xin Tong1, Jianfeng Yu1, He Zhang1, Dong Xue1, Jie Zhang1, Yuan Li1
1School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China

Tóm tắt

The application of an interference fit in the assembly process of thin-walled aerospace composite parts is prone to stress stiffness effects, namely the structural stiffness change caused by the inplate-induced stress. Limited applicability has been available in this regard when using the compliant assembly analysis based on the stiffness-invariant assumption, such as the method of influence coefficient. In addition, these materials possess a hierarchical structure that necessitates the use of material uncertainty in the analysis. However, it is costly and complicated to develop uncertainty analysis and modeling calculations at different scales. In this study, a deviation propagation model of the composite structure (DPMoCS) considering the stress-stiffening effect is proposed to improve the analysis efficiency. Based on the geometric nonlinear theory, the factors of interest affecting the stress-stiffening effect in the interference assembly of a thin-walled composite material are investigated, which are the material elastic and stress field. Our simulations are integrated with material uncertainty quantization and propagation across scales to characterize the uncertainty of the factors of interest as well as reduce the computational cost based on the equivalent model. The method is combined with the Monte Carlo-based stochastic finite element method and applied to the assembly analysis of a composite panel subassembly. The results show that consideration of the stress-hardening effect has a significant effect on the DPMoCS and affects the assembly accuracy as the fiber layup angle deviation increases.

Tài liệu tham khảo

Wu, J., Chen, C., Ouyang, Y., et al.: Recent development of the novel riveting processes. Int. J. Adv. Manuf. Technol. 117, 19–47 (2021). https://doi.org/10.1007/s00170-021-07689-w Scalea, F.L.D., Cloud, G.L., Cappello, F.: A study on the effects of clearance and interference fits in a pin-loaded cross-ply FGRP laminate. J. Compos. Mater. 32, 783–802 (1998). https://doi.org/10.1177/002199839803200805 Raju, K.P., Bodjona, K., Lim, G.H., et al.: Improving load sharing in hybrid bonded/bolted composite joints using an interference-fit bolt. Compos. Struct. 149, 329–338 (2016). https://doi.org/10.1016/j.compstruct.2016.04.025 Hübel, H., Vollrath, B.: Effect of stress stiffness on elastic-plastic strain range. Int. J. Press. Vessels Pip. 192, 104421–104421 (2021). https://doi.org/10.1016/j.ijpvp.2021.104421 Lindau, B., Lorin, S., Lindkvist, L., et al.: Efficient contact modeling in nonrigid variation simulation. J. Comput. Inf. Sci. Eng. 16, 21–27 (2016). https://doi.org/10.1115/1.4032077 Liu, X., An, L., Wang, Z., et al.: Assembly variation analysis of aircraft panels under part-to-part locating scheme. Int. J. Aerosp. Eng. 2019, 1–15 (2019) Liu, S.C., Hu, S.J.: Variation simulation for deformable sheet metal assemblies using finite element methods. J. Manuf. Sci. Eng. 119, 368–374 (1997). https://doi.org/10.1115/1.2831115 Mortensen, A.J.: An integrated methodology for statistical tolerance analysis of flexible assemblies. Dissertation, Brigham Young University (2002) Polini, W., Corrado, A.: Methods of influence coefficients to evaluate stress and deviation distribution of flexible assemblies—a review. Int. J. Adv. Manuf. Technol. 107, 2901–2915 (2020). https://doi.org/10.1007/s00170-020-05210-3 Marinković, D., Zehn, M.: Consideration of stress stiffening and material reorientation in modal space based finite element solutions. Phys. Mesomech. 21, 341–350 (2018). https://doi.org/10.1134/S1029959918040082 Dong, C., Kang, L.: Deformation and stress of a composite–metal assembly. Int. J. Adv. Manuf. Technol. 61, 1035–1042 (2012). https://doi.org/10.1007/s00170-011-3757-9 Shinozuka, M., Deodatis, G.: Response variability of stochastic finite element systems. J. Eng. Mech. 114, 499–519 (1988). https://doi.org/10.1061/(ASCE)0733-9399(1988)114:3(499) Söderberg, R., Wärmefjord, K., Lindkvist, L.: Variation simulation of stress during assembly of composite parts. CIRP Ann. 64, 17–20 (2015). https://doi.org/10.1016/j.cirp.2015.04.048 Merkley, K.: Tolerance analysis of compliant assemblies. Dissertations, Brigham Young University (1998) Chen, H., Tan, C., Wang, Z.: Statistical variation analysis of compliant assembly coupling geometrical and material error. Acta Aeronaut. Astronaut. Sin. 12, 421–423 (2015). https://doi.org/10.7527/S1000-6893.2014.0306 Rafiee, R., Fakoor, M., Hesamsadat, H.: The influence of production inconsistencies on the functional failure of GRP pipes. Steel Compos. Struct. 19, 1369–1379 (2015). https://doi.org/10.12989/scs.2015.19.6.1369 Rafiee, R., Shahzadi, R.: Predicting mechanical properties of nanoclay/polymer composites using stochastic approach. Compos. B Eng. 152, 31–42 (2018). https://doi.org/10.1016/j.compositesb.2018.06.033 Rafiee, R., Ghorbanhosseini, A.: Stochastic multi-scale modeling of randomly grown CNTs on carbon fiber. Mech. Mater. 106, 1–7 (2017). https://doi.org/10.1016/j.mechmat.2017.01.001 Liu, W.K., Siad, L., Tian, R., et al.: Complexity science of multiscale materials via stochastic computations. Int. J. Numer. Methods Eng. 80, 932–978 (2009). https://doi.org/10.1002/nme.2578 Chernatynskiy, A., Phillpot, S.R., LeSar, R.: Uncertainty quantification in multiscale simulation of materials: a prospective. Annu. Rev. Mater. Res. 43, 157–182 (2013). https://doi.org/10.1146/annurev-matsci-071312-121708 Matouš, K., Geers, M.G., Kouznetsova, V.G., et al.: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330, 192–220 (2017). https://doi.org/10.1016/j.jcp.2016.10.070 Greene, M.S., Liu, Y., Chen, W., et al.: Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput. Methods Appl. Mech. Eng. 200, 309–325 (2011). https://doi.org/10.1016/j.cma.2010.08.013 Savvas, D., Stefanou, G.: Assessment of the effect of microstructural uncertainty on the macroscopic properties of random composite materials. J. Compos. Mater. 51, 2707–2725 (2017). https://doi.org/10.1177/0021998316677333 Chin, W.-K., Liu, H.-T., Lee, Y.-D.: Effects of fiber length and orientation distribution on the elastic modulus of short fiber reinforced thermoplastics. Polym. Compos. 9, 27–35 (1988). https://doi.org/10.1002/pc.750090105 Akmar, A.I., Lahmer, T., Bordas, S.P.A., et al.: Uncertainty quantification of dry woven fabrics: a sensitivity analysis on material properties. Compos. Struct. 116, 1–17 (2014). https://doi.org/10.1016/j.compstruct.2014.04.014 Sriramula, S., Chryssanthopoulos, M.K.: Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos. A Appl. Sci. Manuf. 40, 1673–1684 (2009). https://doi.org/10.1016/j.compositesa.2009.08.020 Rafiee, R., Sahraei, M.: Characterizing delamination toughness of laminated composites containing carbon nanotubes: experimental study and stochastic multi-scale modeling. Compos. Sci. Technol. 201, 108487 (2021). https://doi.org/10.1016/j.compscitech.2020.108487 Rafiee, R., Zehtabzadeh, H.: Predicting the strength of carbon nanotube reinforced polymers using stochastic bottom-up modeling. Appl. Phys. A 126, 595 (2020). https://doi.org/10.1007/s00339-020-03784-z Rafiee, R., Eskandariyun, A.: Estimating Young’s modulus of graphene/polymer composites using stochastic multi-scale modeling. Compos. Part B Eng. 173, 106842 (2019). https://doi.org/10.1016/j.compositesb.2019.05.053 Rafiee, R., Firouzbakht, V.: Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique. Mech. Mater. 78, 74–84 (2014). https://doi.org/10.1016/j.mechmat.2014.07.021 Rafiee, R., Reshadi, F., Eidi, S.: Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes. Mater. Des. 67, 422–427 (2015). https://doi.org/10.1016/j.matdes.2014.12.003 Rafiee, R.: Apparent hoop tensile strength prediction of glass fiber-reinforced polyester pipes. J. Compos. Mater. 47, 1377–1386 (2013). https://doi.org/10.1177/0021998312447209 Corrado, A., Polini, W.: Analysis of process-induced deformation on the spring-in of carbon fiber-reinforced polymer thin laminates. J. Compos. Mater. 53, 2901–2907 (2019). https://doi.org/10.1177/0021998319828443 Jareteg, C., Wärmefjord, K., Söderberg, R., et al.: Variation simulation for composite parts and assemblies including variation in fiber orientation and thickness. Procedia CIRP 23, 235–240 (2014). https://doi.org/10.1016/j.procir.2014.10.069 Vashakmadze, T.S.: The theory of anisotropic elastic plates. Springer, Berlin (2013) Zinoviev, P.A., Grigoriev, S.V., Lebedeva, O.V., et al.: The strength of multilayered composites under a plane-stress state. Compos. Sci. Technol. 58, 1209–1223 (1998). https://doi.org/10.1016/S0266-3538(97)00191-7 Chang, Z., Wang, Z., Jiang, B., et al.: Modeling and predicting of aeronautical thin-walled sheet metal parts riveting deformation. Assem. Autom. 58, 1209–1223 (2016). https://doi.org/10.1016/S0266-3538(97)00191-7 Lin, J., Jin, S., Zheng, C., et al.: Compliant assembly variation analysis of aeronautical panels using unified substructures with consideration of identical parts. Comput. Aided Des. 57, 29–40 (2014). https://doi.org/10.1016/j.cad.2014.07.003 Liu, S.: Variation simulation for deformable sheet metal assembly. Dissertation, University of Michigan (1995)