Complexity and Categoricity
Tài liệu tham khảo
Cenzer, 1991, Polynomial-time versus recursive models, Ann. Pure Appl. Logic, 54, 17, 10.1016/0168-0072(91)90008-A
Cenzer, 1992, Polynomial-time Abelian groups, Ann. Pure Appl. Logic, 56, 313, 10.1016/0168-0072(92)90076-C
Cenzer, 1992, Recursively presented games and strategies, Math. Social Sci., 24, 117, 10.1016/0165-4896(92)90059-E
Cenzer, 1995, Feasible graphs and colorings, Math. Logic Quart., 41, 327, 10.1002/malq.19950410305
Cenzer, 1995, Feasibly categorical Abelian groups, 13
Cenzer, 1995, Feasibly categorical models, 960, 300
Cenzer, D. Remmel, J. B. Feasible graphs with standard universe, Ann. Pure Appl. Logic
Cenzer, D. Remmel, J. B. Complexity theoretic model theory and algebra, Handbook of Recursive Mathematics, Yu. ErshovS. S. GoncharovA. NerodeJ. B. Remmel, Elsevier, Amsterdam/New York
Goncharov, 1975, Autostability and computable families of constructivization, Algebra and Logic, 14, 392, 10.1007/BF01668470
Goncharov, 1980, Autostability of models, Algebra and Logic, 19, 28, 10.1007/BF01669102
Grigorieff, 1990, Every recursive linear ordering has a copy in DTIME(n), J. Symbolic Logic, 55, 260, 10.2307/2274966
Hopcroft, 1969
Nerode, 1987, Complexity theoretic algebra I, vector spaces over finite fields
Nerode, 1989, Complexity theoretic algebra II, the free Boolean algebra, Ann. Pure Appl. Logic, 44, 71, 10.1016/0168-0072(89)90047-X
Nerode, 1990, Complexity theoretic algebra: vector space bases, 9, 293
Nurtazin, A. 1974, Completable Classes and Algebraic Conditions for Autostability, Novosibirsk
Remmel, 1981, Recursively categorical linear orderings, Proc. Amer. Math. Soc., 83, 387, 10.1090/S0002-9939-1981-0624937-1
Remmel, 1990, When is every recursive linear ordering of type μ recursively isomorphic to a p-time linear order over the binary representation of the natural numbers?, 9, 321
Remmel, 1993, Polynomial-time categoricity and linear orderings, 321