Complexity and Categoricity

Information and Computation - Tập 140 - Trang 2-25 - 1998
Douglas Cenzer, Jeffrey B. Remmel

Tài liệu tham khảo

Cenzer, 1991, Polynomial-time versus recursive models, Ann. Pure Appl. Logic, 54, 17, 10.1016/0168-0072(91)90008-A Cenzer, 1992, Polynomial-time Abelian groups, Ann. Pure Appl. Logic, 56, 313, 10.1016/0168-0072(92)90076-C Cenzer, 1992, Recursively presented games and strategies, Math. Social Sci., 24, 117, 10.1016/0165-4896(92)90059-E Cenzer, 1995, Feasible graphs and colorings, Math. Logic Quart., 41, 327, 10.1002/malq.19950410305 Cenzer, 1995, Feasibly categorical Abelian groups, 13 Cenzer, 1995, Feasibly categorical models, 960, 300 Cenzer, D. Remmel, J. B. Feasible graphs with standard universe, Ann. Pure Appl. Logic Cenzer, D. Remmel, J. B. Complexity theoretic model theory and algebra, Handbook of Recursive Mathematics, Yu. ErshovS. S. GoncharovA. NerodeJ. B. Remmel, Elsevier, Amsterdam/New York Goncharov, 1975, Autostability and computable families of constructivization, Algebra and Logic, 14, 392, 10.1007/BF01668470 Goncharov, 1980, Autostability of models, Algebra and Logic, 19, 28, 10.1007/BF01669102 Grigorieff, 1990, Every recursive linear ordering has a copy in DTIME(n), J. Symbolic Logic, 55, 260, 10.2307/2274966 Hopcroft, 1969 Nerode, 1987, Complexity theoretic algebra I, vector spaces over finite fields Nerode, 1989, Complexity theoretic algebra II, the free Boolean algebra, Ann. Pure Appl. Logic, 44, 71, 10.1016/0168-0072(89)90047-X Nerode, 1990, Complexity theoretic algebra: vector space bases, 9, 293 Nurtazin, A. 1974, Completable Classes and Algebraic Conditions for Autostability, Novosibirsk Remmel, 1981, Recursively categorical linear orderings, Proc. Amer. Math. Soc., 83, 387, 10.1090/S0002-9939-1981-0624937-1 Remmel, 1990, When is every recursive linear ordering of type μ recursively isomorphic to a p-time linear order over the binary representation of the natural numbers?, 9, 321 Remmel, 1993, Polynomial-time categoricity and linear orderings, 321