Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự Phức Tạp Trong Di Truyền Của Viêm Khớp Psoriatic
Tóm tắt
Bài báo này cung cấp cái nhìn tổng quát về di truyền học của bệnh psoriatic và các thách thức hiện tại. Với việc áp dụng y học tích hợp, nhiều vùng gen ứng cử đã được xác định cho bệnh psoriatic sẽ được chú thích, tổng hợp và trực quan hóa. Các nghiên cứu gần đây báo cáo sự khác biệt trong cấu trúc di truyền giữa viêm khớp psoriatic và bệnh vẩy nến chỉ trên da sẽ được làm nổi bật. Việc tập trung vào các con đường chức năng kết nối các biến thể di truyền đã được xác định trước đó có thể giúp tăng cường hiểu biết của chúng ta về các bệnh psoriatic. Cấu trúc di truyền giữa viêm khớp psoriatic và bệnh vẩy nến chỉ trên da có sự khác biệt với các tín hiệu đặc trưng cho viêm khớp trong trạng thái liên kết không phụ thuộc vào các tín hiệu bệnh vẩy nến đã được công bố. Y học tích hợp có vai trò quan trọng trong việc hiểu các cơ chế tế bào của các bệnh psoriatic. Việc lựa chọn cẩn thận nhóm đối tượng mắc bệnh psoriatic đã dẫn đến những khác biệt về cơ chế giữa viêm khớp psoriatic và bệnh vẩy nến trên da.
Từ khóa
#di truyền học #bệnh psoriatic #viêm khớp psoriatic #bệnh vẩy nến #y học tích hợpTài liệu tham khảo
Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 2014;70(3):512–6.
Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017a;376(10):957–70.
•• Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N. Engl. J. Med. 2017b;376(10):957–70 Excellent review on the pathophysiology, epidemiology, clinical and treatment of psoriaitc arthritis.
O’Rielly DD, Rahman P. Genetic, epigenetic and Pharmacogenetic aspects of psoriasis and psoriatic arthritis. Rheum Dis Clin N Am. 2015a;41(4):623–42.
Stuart, P. E., Tsoi, L. C, Hambro, C. A, Elder, J. T. Genetics of psoriasis. In: Fitzgerald O, Gladman D, editors. Oxford Textb. Psoriatic Arthritis. 1st Edition. 2019a. p. 35–55.
• O’Rielly DD, Rahman P. Genetic, epigenetic and pharmacogenetic aspects of psoriasis and psoriatic arthritis. Rheum. Dis. Clin. North Am. 2015b;41(4):623–42 This review provides a summary of differential expressed genes, epigenetics and pharmacogenetics of psoriatic disease as well as genetic susceptibiltiy of psoriasis and psoraitic arthritis.
•• Stuart, P. E, Tsoi, L. C, Hambro, C. A, Elder, J. T. Genetics of psoriasis. In: Fitzgerald O, Gladman D, editors. Oxford Textb. Psoriatic Arthritis. 1st ed. 2019b. p. 35–55. Exhaustive reivew of psoriasis with comprehensive list of susceptibility loci in psoriasis.
Winchester R, O’Reilly, D P R. Genetics of psoriatic arthritis. In: FitzGerard O, Gladman D, editors. Oxford Textb. Psoriatic Arthritis. 2019a. p. 57–67.
• Winchester R, O’Reilly D. P R. genetics of psoriatic arthritis. In: Oxford Textb. Psoriatic arthritis. Fitzgerard O, Gladman D ed; 2019b. p. 57–67. A very practical review of the MHC associations and non-mHC associations in psoriatic arthritis.
Rheum Dis Rahman AP, Elder JT, Rahman P. arthritis genetic epidemiology of psoriasis and psoriatic topic collections genetic epidemiology of psoriasis and psoriatic arthritis. Ann Rheum Dis [Internet]. 2005;6464:37–39. Available from: http://ard.bmjjournals.com/cgi/content/full/64/suppl_2/ii37%0Ahttp://ard.bmjjournals.com/cgi/content/full/64/suppl_2/ii37#otherarticles%0Ahttp://ard.bmjjournals.com/cgi/content/full/64/suppl_2/ii37#BIBL
Quan L, Chandran V, Tsoi L, Nair R, Gladman DD, Elder J, et al. AB0020B quantifying differences in heritability among psoriatic arthritis (psa), cutaneous psoriasis (PSC) and psoriasis vulgaris (PSV). Ann Rheum Dis. 2019;78:1476–7.
Yan D, Issa N, Afifi L, Jeon C, Chang H-W, Liao W. The role of the skin and gut microbiome in psoriatic disease. Curr Dermatol Rep. 2017b;6(2):94–103.
Capon F. The genetic basis of psoriasis. Int. J. Mol. Sci. [Internet]. 2017;18(12). Available from: http://www.ncbi.nlm.nih.gov/pubmed/29186830%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5751129
Murray C, Mann DL, Gerber LN, Barth W, Perlmann S, Decker JL, et al. Histocompatibility alloantigens in psoriasis and psoriatic arthritis. Evidence for the influence of multiple genes in the major histocompatibility complex. J Clin Invest. 1980;66(4):670–5.
Jordan CT, Cao L, Roberson EDO, Pierson KC, Yang CF, Joyce CE, et al. PSORS2 is due to mutations in CARD14. Am J Hum Genet. 2012;90(5):784–95.
Husted JA, Gladman DD, Long JA, Farewell VT. A modified version of the health assessment questionnaire (HAQ) for psoriatic arthritis. Clin Exp Rheumatol. 1995;13(4):439–43.
Kane D, Stafford L, Bresniham B, FitzGerard O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology. 2003;42(12):1460–8.
FitzGerald O, Haroon M, Giles JT, Winchester R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther. 2015;17(1).
Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann Rheum Dis. 2016a;75(1):155–62.
•• Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 2016b;75(1):155–62 This paper identifies numerous genotype-phenotype correlations of HLA alleles with clinical and radiographic subtypes of PsA.
Ho PYPC, Barton A, Worthington J, Thomson W, Silman AJ, Bruce IN. HLA-Cw6 and HLA-DRB1 *07 together are associated with less severe joint disease in psoriatic arthritis. Ann Rheum Dis. 2007;66(6):807–11.
Gladman DD, Kung TN, Siannis F, Pellett F, Farewell VT, Lee P. HLA markers for susceptibility and expression in scleroderma. J Rheumatol. 2005;32(8):1481–7.
Korendowych E, Dixey J, Cox B, Jones S, McHugh N. The influence of the HLA-DRB1 rheumatoid arthritis shared epitope on the clinical characteristics and radiological outcome of psoriatic arthritis. J Rheumatol. 2003;30(1):96–101.
Rahman P, Snelgrove T, Peddle L, Siannis F, Farewell V, Schentag C, et al. A variant of the IL4 I50V single-nucleotide polymorphism is associated with erosive joint disease in psoriatic arthritis. Arthritis Rheum. 2008;58(7):2207–8.
Rahmati S, Abovsky M, Pastrello C, Kotlyar M, Lu R, Cumbaa CA, et al. pathDIP 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species. Nucleic Acids Res. [Internet]. 2019; Available from: http://www.ncbi.nlm.nih.gov/pubmed/31733064 .
Ahn R, Gupta R, Lai K, Chopra N, Arron ST, Liao W. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genomics. 2016;17(1).
Hiebert P, Werner S. Targeting metabolism to treat psoriasis. Nat Med. 2018;24(5):537–9.
Hosaka Y, Saito T, Sugita S, Hikata T, Kobayashi H, Fukai A, et al. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl. Acad. Sci U. S. A. National Academy of Sciences. 2013;110(5):1875–80.
Ota T, Takekoshi S, Takagi T, Kitatani K, Toriumi K, Kojima T, et al. Notch signaling may be involved in the abnormal differentiation of epidermal keratinocytes in psoriasis. Acta Histochem Cytochem. 2014;47(4):175–83.
Skarmoutsou E, Trovato C, Granata M, Rossi GA, Mosca A, Longo V, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. 2015;307(10):863–73.
Gudjonsson JE, Johnston A, Stoll SW, Riblett MB, Xing X, Kochkodan JJ, et al. Evidence for altered wnt signaling in psoriatic skin. J Invest Dermatol. 2010;130(7):1849–59.
M.T. Patrick, P.E. Stuart, K. Raja, S. Chi, Z. He, J.J. Voorhees, et al. Integrative approach to reveal cell type specificity and gene candidates for psoriatic arthritis outside the MHC. Front. Genet. [Internet]. 2019a;10(APR). Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L628214957%0Ahttp://dx.doi.org/10.3389/fgene.2019.00304
•• M.T. Patrick, P.E. Stuart, K. Raja, S. Chi, Z. He, J.J. Voorhees,et al. Integrative approach to reveal cell type specificity and gene candidates for psoriatic arthritis outside the MHC. Front. Genet. [Internet]. 2019b;10(APR). Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L628214957%0Ahttp://dx.doi.org/10.3389/fgene.2019.00304. This article reveals epigenomic elements that can provide useful insights from suggestive susceptibilty loci from GWAS studies.
Mavropoulos A, Rigopoulou EI, Liaskos C, Bogdanos DP, Sakkas LI. The role of p38 mapk in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin Dev Immunol. 2013;2013.
Zhao W, Xiao S, Li H, Zheng T, Huang J, Hu R, et al. MAPK phosphatase-1 deficiency exacerbates the severity of imiquimod-induced psoriasiform skin disease. Front. Immunol. 2018.
Zheng T, Zhao W, Li H, Xiao S, Hu R, Han M, et al. P38α signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Sci. Signal. 2018;11(521).
Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, et al. Potential role of cytochrome c and Tryptase in psoriasis and psoriatic arthritis pathogenesis: focus on resistance to apoptosis and oxidative stress. Front Immunol. 2018;9:2363.
Kastelan M, Prpić-Massari L, Brajac I. Apoptosis in psoriasis. Acta Dermatovenerol. Croat. [internet]. 2009;17(3):182–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19818217 .
Weatherhead SC, Farr PM, Jamieson D, Hallinan JS, Lloyd JJ, Wipat A, et al. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation. J Invest Dermatol. 2011;131(9):1916–26.
Neumann E, Khawaja K, Müller-Ladner U. G protein-coupled receptors in rheumatology. Nat. Rev. Rheumatol. [internet]. 2014;10(7):429–436. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24798574 .
Coates LC, Helliwell PS. Psoriatic arthritis: state of the art review. Clin. Med. J. R. Coll. Physicians London. 2017;17(1):65–70.
Fort JG, Smith JB, Abruzzo JL. Abnormal T-cell function in patients with psoriatic arthritis: evidence for decreased interleukin 2 production. Rheumatol Int. 1993;13(4):151–4.
Kang EJ, Kavanaugh A. Psoriatic arthritis: latest treatments and their place in therapy. Ther Adv Chronic Dis. 2015;6(4):194–203.
Yan D, Afifi L, Jeon C, Trivedi M, Chang HW, Lee K, et al. The metabolomics of psoriatic disease. Psoriasis Targets Ther. 2017a;7:1–15.
Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res. [Internet]. 2017 Jan [cited 2017 Apr 28];45(Database issue):D419–D426. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210562/
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog. 2019;58(9):1571–80.
Shamilov R, Aneskievich BJ. TNIP1 in autoimmune diseases: regulation of toll-like receptor signaling. J Immunol Res. 2018;2018.
Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
Blake JA, Christie KR, Dolan ME, Drabkin HJ, Hill DP, Ni L, et al. Gene ontology consortium: Going forward. Nucleic Acids Res. [Internet]. 2015 Jan [cited 2016 Jan 19];43(D1):D1049–56. Available from: http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gku1179
Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J, et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat. Commun. 2018a;9(1).
Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet. 2015a;97(6):816–36.
•• Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J, et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat. Commun. 2018b;9(1) Using machine learning methodology differences in genetic architecture between psoriasis subtypes were interrogated to develop risk assessment models for PsA.
•• Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 2015b;97(6):816–36 PsA GWAS followed by meta-analysis of other large datasets identified multiple significant loci and differences in various genetic loci were noted between cutanous psoriasis and PsA.